A panchromatic view of the evolution of supermassive black holes

Lusso, Elisabeta (2011) A panchromatic view of the evolution of supermassive black holes, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Astronomia, 23 Ciclo. DOI 10.6092/unibo/amsdottorato/3740.
Documenti full-text disponibili:
[img]
Anteprima
Documento PDF (English) - Richiede un lettore di PDF come Xpdf o Adobe Acrobat Reader
Download (8MB) | Anteprima

Abstract

This PhD Thesis is devoted to the accurate analysis of the physical properties of Active Galactic Nuclei (AGN) and the AGN/host-galaxy interplay. Due to the broad-band AGN emission (from radio to hard X-rays), a multi-wavelength approach is mandatory. Our research is carried out over the COSMOS field, within the context of the XMM-Newton wide-field survey. To date, the COSMOS field is a unique area for comprehensive multi-wavelength studies, allowing us to define a large and homogeneous sample of QSOs with a well-sampled spectral coverage and to keep selection effects under control. Moreover, the broad-band information contained in the COSMOS database is well-suited for a detailed analysis of AGN SEDs, bolometric luminosities and bolometric corrections. In order to investigate the nature of both obscured (Type-2) and unobscured (Type-1) AGN, the observational approach is complemented with a theoretical modelling of the AGN/galaxy co-evolution. The X-ray to optical properties of an X-ray selected Type-1 AGN sample are discussed in the first part. The relationship between X-ray and optical/UV luminosities, parametrized by the spectral index αox, provides a first indication about the nature of the central engine powering the AGN. Since a Type-1 AGN outshines the surrounding environment, it is extremely difficult to constrain the properties of its host-galaxy. Conversely, in Type-2 AGN the host-galaxy light is the dominant component of the optical/near-IR SEDs, severely affecting the recovery of the intrinsic AGN emission. Hence a multi-component SED-fitting code is developed to disentangle the emission of the stellar populationof the galaxy from that associated with mass accretion. Bolometric corrections, luminosities, stellar masses and star-formation rates, correlated with the morphology of Type-2 AGN hosts, are presented in the second part, while the final part concerns a physically-motivated model for the evolution of spheroidal galaxies with a central SMBH. The model is able to reproduce two important stages of galaxy evolution, namely the obscured cold-phase and the subsequent quiescent hot-phase.

Abstract
Tipologia del documento
Tesi di dottorato
Autore
Lusso, Elisabeta
Supervisore
Co-supervisore
Dottorato di ricerca
Scuola di dottorato
Scienze matematiche, fisiche ed astronomiche
Ciclo
23
Coordinatore
Settore disciplinare
Settore concorsuale
URN:NBN
DOI
10.6092/unibo/amsdottorato/3740
Data di discussione
12 Aprile 2011
URI

Altri metadati

Statistica sui download

Gestione del documento: Visualizza la tesi

^