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Abstract 

 

Habitat loss and fragmentation have a prominent role in determining the size of plant populations, 

and can affect plant-pollinator interactions. It is hypothesized that in small plant populations the 

ability to set seeds can be reduced due to limited pollination services, since individuals in small 

populations can receive less quantity or quality of visits. In this study, I investigated the effect of 

population size on plant reproductive success and insect visitation in 8 populations of two common 

species in the island of Lesvos, Greece (Mediterranean Sea), Echium plantagineum and Ballota 

acetabulosa, and of a rare perennial shrub endemic to north-central Italy, Ononis masquillierii.  

All the three species depended on insect pollinators for sexual reproduction. For each species, 

pollen limitation was present in all or nearly all populations, but the relationship between pollen 

limitation and population size was only present in Ononis masquillierii. However, in Echium 

plantagineum, significant relationships between both open-pollinated and handcrossed-pollinated 

seed sets and population size were found, being small populations comparatively less productive 

than large ones. Additionally, for this species, livestock grazing intensity was greater for small 

populations and for sparse patches, and had a negative influence on productivity of the remnant 

plants. Both Echium plantagineum and Ballota acetabulosa attracted a great number of insects, 

representing a wide spectrum of pollinators, thereby can be considered as generalist species. For 

Ballota acetabulosa, the most important pollinators were megachilid female bees, and insect 

diversity didn’t decrease with decreasing plant population size. By contrast, Ononis masquillierii 

plants generally received few visits, with flowers specialized on small bees (Lasioglossum spp.), 

representing the most important insect guild. In Echium plantagineum and Ballota acetabulosa, 

plants in small and large populations received the same amount of visits per flower, and no 

differences in the number of intraplant visited flowers were detected. On the contrary, large Ononis 

populations supported higher amounts of pollinators than small ones. At patch level, high Echium 

flower density was associated with more and higher quality pollinators.  

My results indicate that small populations were not subject to reduced pollination services than 

large ones in Echium plantagineum and Ballota acetabulosa, and suggest that grazing and resource 

limitation could have a major impact on population fitness in Echium plantagineum. The absence of 



x   Abstract 

any size effects in these two species can be explained in the light of their high local abundance, 

wide habitat specificity, and ability to compete with other co-flowering species for pollinators. By 

contrast, size represents a key characteristic for both pollination and reproduction in Ononis 

masquillierii populations, as an increase in size could mitigate the negative effects coming from the 

disadvantageous reproductive traits of the species. Finally, the widespread occurrence of pollen 

limitation in the three species may be the result of 1) an ongoing weakening or disruption of plant-

pollinator interactions derived from ecological perturbations, 2) an adaptive equilibrium in response 

to stochastic processes, and 3) the presence of unfavourable reproductive traits (for Ononis 

masquillierii). 
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1. Introduction 

 

During the last few decades, an increasing emphasis have been placed on understanding the main 

drivers affecting plant-pollinator systems. The São Paulo Declaration on Pollinators (1998) raised 

international interest in pollinator conservation, and provided impetus for national and international 

research programmes aimed to evaluate the causes of pollinator declines and the consequences on 

agricultural and natural ecosystems. 

It is in fact increasingly recognized that many ecosystems are facing a dramatic pollination 

crisis (Buchmann & Nabhan 1996, Kearns et al. 1998). A great number of studies have shown that 

plant-pollinator systems are under siege from natural and human-induced disturbances, such as fire 

(Petanidou & Ellis 1996, Potts et al. 2001, 2003), habitat fragmentation and isolation (Aizen & 

Feinsinger 1994a, Steffan-Dewenter & Tscharntke 1999, 2002), changes in land use (Kearns et al. 

1998), pesticides (Batra 1982, O’Toole 1993), biological invasions (Brown & Mitchell 2001) and 

climate change (Price & Waser 1998, Warren et al. 2001). Additionally, surveys conducted on 258 

species of angiosperms, indicate a high prevalence of pollen limitation (inadequate pollen receipt to 

fertilize all ovules), with 62% of the species pollen limited to some extent (Burd 1994, Knight et al. 

2005a). Other authors, however, theoretically contest that pollen limitation is widespread within 

plant species (Burley & Willson 1983, Snow 1986, Walsh & Charlesworth 1992). 

Many studies focused on whether pollen limitation could be governed by environmental factors, 

and several ecological perturbations have been proposed to have a major influence on it (Table 1). 

For example, the introduction of rewarding non-native plant species can increase pollination 

competition among plants, hence increasing pollen limitation in plants less attractive to pollinators, 

or wide-ranging shortfalls of pollinators, shifts in pollinator species composition, and accelerated 

rates of pollinator extinction may put into jeopardy pollination services to plants. 

Habitat fragmentation is known to represent one of the most frequent and major threats to 

biodiversity (Oostermeijer 2003), and to plant-pollinator systems (Table 1). It has been defined as a 

process where “a large expanse of habitat is transformed into a number of smaller patches of 

smaller total area, isolated from each other by a matrix of habitats unlike the original” (Wilcove et 

al. 1986). Basically, the process of fragmentation is made up of three components, depending on the 
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degree of habitat loss (Andrén 1994): 1) an extreme reduction (or complete loss) of habitat; 2) a 

reduction in size of habitat fragments; and 3) a lower connectivity of the remnant fragments. 

Therefore, fragmentation implies a subdivision of a continuous habitat into fragments, becoming 

progressively smaller and more isolated as the process increases, ultimately leading to population 

extinction when a critical threshold value of fragmentation is reached. From the plant’s perspective, 

the lack of suitable habitat for expansion coming from habitat fragmentation may favour the 

occurrence of small arrays of plants, which in turn may cause pollination deficits (Widén 1993, 

Ågren 1996, Morgan 1999). However, pollinators may perceive habitat fragmentation in a different 

way than plants, as basic bee habitat requirements can be less dependent upon the distribution of 

flowering plants than expected (Cane 2001). For example, the availability of specific nesting 

attributes (soil texture, moisture, salinity) may be fundamental for the persistence of bee 

communities (Cane 1991). 

Small and sparse natural plant populations can be more sensitive to habitat deterioration, due to 

the Allee effect, which suggests that low reproduction success (in terms of fertility and /or survival) 

can result from declined population size and density (Stephens et al. 1999). In fact, small and sparse 

populations may be more prone to pollen limitation than large ones (Table 1), and may show greater 

vulnerability to environmental, demographic and genetic hazards (Menges 1992, Young et al. 1996, 

Holsinger 2000), leading in the long or short term to a greater likelihood of stochastic extinction. 

There is in fact a large body of evidence that small populations are characterized by a lower genetic 

diversity than large ones (Ouborg et al. 1991, Weidema et al. 1996, Hensen & Oberprieler 2005), 

associated with higher levels of inbreeding depression and genetic drift (Ellstrand & Elam 1993, 

Fischer & Matthies 1998, Dudash & Fenster 2000, Lienert et al. 2002). 

Previous studies have reported a positive relationship between plant reproductive success and 

population size (Ågren 1996, Hendrix & Kyhl 2000, Kéry et al. 2000, Oostermeijer et al. 2000, 

Mavraganis & Eckert 2001, Tomimatsu & Ohara 2002, Brys et al. 2004, Kolb 2005, Ward & 

Johnson 2005, Hensen & Wesche 2006) or plant density (Kunin 1993, 1997; Bosh & Waser 1999, 

Kirchner et al. 2005) and size and density often correlate (Ågren 1996). Two possible explanations 

for these observed patterns are that the quantity and/or quality of pollen receipt are insufficient in 

such populations (Table 1). First, small and scattered populations generally result less attractive to 

pollinators (Jennersten 1988, Kunin 1997), having lower visitation rates and pollen deposition on 
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stigmas. Second, in such populations, pollinators are more likely to favour shorter flight distances, 

thus increasing within-plant movements and pollen transfer. This can directly affect the quality of 

the pollination service by increasing the frequency of geitonogamy, ultimately leading to inbreeding 

depression in self-compatible plant species (De Jong et al. 1993, Karron et al. 1995), or resulting in 

a high fraction of incompatible conspecific pollen deposited on stigmas in self-incompatible 

species, that may physically or chemically prevent outcross pollen from contacting the stigma and 

from performing pollen tube germination and fertilization success (stigma clogging) (Shore & 

Barrett 1984, Scribailo & Barrett 1994, Murphy 2000). 

 

 

    
Ecological perturbation Predicted consequence for pollen 

limitation 
Explanation Empirical support 

    

PLcoflowering species > PLsingle 
flowering species 

Co-flowering results in pollinator 
competition, increased 
heterospecific pollen delivery, 
and/or stigma clogging by 

heterospecific pollena 

Campbell 1985, Gross 1996, Gross 
& Werner 1983 

Presence of other plant species 

PLcoflowering species < PLsingle 
flowering species 

Co-flowering results in increased 

pollinator attractionb 
Moeller 2004 

Plant population size/density 
PLin small populations > PLin 

large populations 

Small populations have reduced 
pollinator visitation, pollen 

depositionc, ratio of conspecific to 

heterospecific pollen deliveredd 
and more intraplant pollinator 

visitse 

Ågren 1996, Davis et al. 2004, 
Forsyth 2003, Knight 2003, Kunin 
1997, Moeller 2004, Sih & Baltus 
1987, Waites & Ågren 2004, Ward 

& Johnson 2005 

Pollinator loss 
PLwith fewer pollinators > PLwith 

more pollinators 

Pollinator visitation rate increases 
with pollinator abundance and 

diversityf 
Liu & Koptur 2003 

Resource additions 
PLin resource rich habitat > PLin 

resource poor habitat 

Seed production depends solely on 
pollen receipt when resources are 
unlimited 

Galen et al. 1985 

Habitat size and isolation 
PLin fragmented habitat > PLin 

continuous habitat 

Habitat fragmentation reduces the 
abundance of plants and/or 
pollinators, alters pollinator 

compositiong 

Cunningham 2000, Groom 2001, 
Johnson et al. 2004, Moody-Weis 

& Heywood 2001, Steffan-
Dewenter & Tscharntke 1999, 

Wolf & Harrison 2001 
PLwith high enemy abundance > 

PLwith low enemy abundance 
Enemies decrease pollinator 

attraction and pollinator visitationh 
None 

Plant enemies (herbivores, 
pathogens) PLwith high enemy abundance < 

PLwith low enemy abundance 

Enemies decrease plant resource 
status; plants become more limited 
by resources than pollen 

Parker 1987 

Plant mutualists (mycorrhizal 
fungi) 

PLwith high mutualist abundance < 
PLwith low mutualist abundance 

The presence of soil mutualists 
facilitates plant resource 
acquisition, pollinator visitation 

and seed seti 

None 

   (continued) 
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aCampbell & Motten 1985; Caruso 1999, 2001; Galen & Gregory 1989; Waser 1983 
bMoeller 2005, Rathcke 1983 
cFausto et al. 2001, Feinsinger et al. 1991, Regal 1982, Whitehead 1983 
dCaruso 2002, Kunin 1993 
eFranceschinelli & Bawa 2000, Iwaizumi & Sakai 2004, Kinkhamer & De Jong 1990, Mustajärvi et al. 2001 
fBuchmann & Nabhan 1996, Kearns et al. 1998, Thomson 2001 
gJennersten 1988, Linhart & Feinsinger 1980 
hMothershead & Marquis 2000; Steets & Ashman 2004; Strauss et al. 1996; Irwin, Brody & Waser 2001 
iWolfe et al. 2005 
jDukas 2001, Dukas & Morse 2003, Muñoz & Arroyo 2004, Suttle 2003 
kParker 1997 

lRambuda & Johnson 2004 

mO’Toole 1993, Paini 2004, Paton 1993, Sugden & Pyke 1991 

 

Table 1 (From Knight et al. 2005a) 

 

 

 

Even if there is a large body of evidence that extrinsic factors may influence the seed output, 

such as plant population size or density, intrinsic factors (relative to the plant reproductive traits) 

may play an important role as well. Plant species may in fact not be equally sensitive to pollen 

limitation, and many plant traits are supposed to influence to some extent its likelihood and its 

magnitude (Larson & Barrett 2000, Knight et al. 2005a). 

Among these, a major role can be attributed to all the traits responsible for flower attractiveness 

(flower size and display, nectar secretion, flower shape) and the traits that prevent the plants to be 

strictly dependent on pollinators (capacity of autogamy, clonal propagation). 

Ecological perturbation Predicted consequence for pollen 
limitation Explanation Empirical support 

Pollinator predators 
PLwith pollinator predators > 

PLwithout predators 
Predators reduce pollinator 

abundance and visitation ratej 
Knight et al. 2005b 

PLnon-native plants > PLnative 
plants 

Non-native plants lack effective 

pollinatorsk 
None 

Non-native plant species 
PLnon-native plants < PLnative 

plants 
Non-native plants have a higher 

frequency of autogamyl 
None 

Non-native pollinators 
PLwith non-native pollinator > 

PLwithout non-native pollinator 

Non-native pollinators compete 
with native pollinators, and are less 
efficient pollinators of crops and 

wild plantsm 

None 
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For example, autogamous species (or allogamous species capable of vegetative propagation) are 

expected to be less dependent on external pollen vectors than obligate outcrossers; these species 

will therefore be less exposed than others to the detrimental effects of insect paucity or inconstancy, 

and will persist even at low plant population densities (Morgan et al. 2005). According to Burd’s 

(1994) hypothesis, the additional source of pollen represented by the self-pollen in the selfing 

species would account for the lower pollen limitation compared with the outcrossing species. 

Another factor that can have a strong influence on pollen limitation involves the degree of plant 

specialization. Given the profound differences in terms of body size, behavior and feeding 

requirement among pollinator taxa, plant specialization often means modification in the 

morphology of the flowers (Fægri & van der Pijl 1979), even if species-specific pollination is quite 

rare (Waser et al. 1996). For example, large-flowered and nectariferous species are expected to 

result more attractive to pollinators, and will likely less suffer from low insect visitation rate than 

their counterparts (Bell 1985, Stanton & Preston 1988, Klinkhamer & De Jong 1990, Eckhart 1991, 

Vaughton & Ramsey 1998, Valido et al. 2002, Momose 2004). 

Again, in constant pollinator regimes there is a clear selective advantage on specialization, as 

restricted floral access can improve the quality of the pollen receipt via better pollen placement on 

pollinators (Kunin & Shmida 1997), promoting plant reproductive isolation and speciation rate 

(Sargent 2004). Therefore, for a rare plant’s perspective, specialization can counterbalance the lack 

of showy floral displays and copious rewards. Nevertheless, many studies highlighted how 

pollination systems are mostly governed by extreme and unpredictable fluctuations in pollinator 

abundance and composition at both temporal and spatial scale (Herrera 1988, Petanidou & Ellis 

1993, Tepedino et al. 1999, Petanidou & Potts 2006). In such conditions, specialist plant species, 

that can rely on a narrow spectrum of suitable pollinators, are expected to exhibit higher pollen 

limitation than generalist species (but see Larson & Barrett 2000), as a consequence of a higher 

likelihood to lose (temporarily or definitely) the few appropriate pollinators which the plant has 

specialized on. 

When insufficient pollen delivery comes from both extrinsic (relative to ecological 

perturbations) and intrinsic (relative to the reproductive characteristics of the species) factors, the 

species may enter in a vicious circle of events, in which the decrease of population size is not 
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buffered by a proper ability of assuring the reproductive success, potentially leading to an ever-

decreasing population size and fitness process, and ultimately ending with extinction. 

The Mediterranean region is in unison considered one of the richest bee and plant community 

worldwide (Petanidou & Lamborn 2005 and references therein), and this diversity is maintained 

despite both ecological constraints (e.g. summer drought) and heavy anthropogenic perturbations 

(e.g. fire, grazing, land use) that have created a spatially heterogeneous and fragmented landscape.  

This translates in a strong dependance of Mediterranean plants on pollination mediated by insects, 

and, in the meanwhile, in a high exposure for Mediterranean plant-pollinator communities to the 

risk of weakening or disruption of the interactions. 

This study examines the pollination ecology of three different plant species (Echium 

plantagineum (Boraginaceae), Ballota acetabulosa (Labiatae), Ononis masquillierii (Fabaceae)), 

occurring in the Mediterranean Basin, with particular emphasis on the effect of plant population 

size on reproductive success and pollination. The main question is whether small populations are at 

reproductive disadvantage over large ones, and to what extent this is pollination-related.  

 



     

2. Materials and Methods 

 

2.1. The species 

 

Echium plantagineum L. 

Echium plantagineum L. (Boraginaceae) is an annual or biennial plant, 20 to 60 cm high and with a 

rosette morphology. It is mainly found on roadsides, fields, degraded pastures, and sandy areas near 

to the sea, at altitudes of 0-1300 m. Even if native to the western Mediterranean Basin, it has been 

introduced to many other countries (mainly Australia and USA), where it has quickly become a 

noxious weed of temperate pastures (Piggin & Sheppard 1995). In the Mediterranean, it flowers 

from early April to early-middle May.  

Inflorescences are 5-15 cm high usually with 2-8 ascending branches. Flowers are zigomorphic, 

with a shallowly five-lobed infundibuliform corolla (18-30 mm), blue becoming pink through 

purple, usually with two exerted stamens (Fig.1). The calyx is 7-10 mm long at anthesis, but up to 

15 mm in fruit. The fruits are four rough, wrinkled to fine-tubercled nutlets. 

It produces large amounts of nectar (Corbet & Delfosse 1984, Corbet et al. 1991), and it’s mainly 

pollinated by bees. 

 

 

 
Fig.1. Flower of Echium plantagineum L. (Photo: 

http://perso.orange.fr/scanice/botanique_flore.htm).
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Ballota acetabulosa (L.) Bentham 

Ballota acetabulosa (L.) Bentham (Labiatae) is an evergreen perennial shrub, woody at base, 

growing up to 80 cm high. It cannot grow in the shade, it requires dry or moist soils (on rough 

grounds) and it’s drought tolerant. Its distributional range is represented by the Aegean area, 

including Turkey, Greece and Crete. It flowers from early June through July. 

The small zigomorphic flowers have a purple and white corolla (15-18 mm), and are arranged in 

verticillasters along the ascending stems. The calyx is grey-green, hairy and apically expanded (12-

15 mm), and holds the corolla tube; it persists after flower’s dehiscence (Fig.2). Flowers have a 

nectary placed at the base of the superior ovary, producing nectar (Petanidou et al. 2000). 

The flat, felted thick leaves are well adapted to xerophytic conditions, having a high specific dry 

weight and a reduced inner air volume; at maturity, the percentage of internal exposed surface per 

leaf area increases as an adaptation to water paucity (Psaras & Rhizopoulou 1995). 

The fruits are four nutlets, held in the same receptacle at the base of the calyx. 

Like most of the Labiatae of the Mediterranean, B. acetabulosa is mostly pollinated by bees, 

which can find in its flowers a large source of nectar and water, necessary to contrast the severe 

summer drought (Petanidou & Voukou 1993). 

 

 
Fig.2. Flower of Ballota acetabulosa 

(L.) Bentham visited by Eucera sp. 

(Photo: Hjalmar Dahm).
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Ononis masquillierii Bertol. 

Ononis masquillierii Bertol. (Fabaceae) is a perennial, leguminous shrub, endemic to the northern 

Appennines (Italy), and found from Emilia Romagna to the northern part of Marche and Tuscany. 

The species grows up to 40 cm high on dry and clay soils, at altitudes of 0-600 m, where it prefers 

sunny slopes. It flowers from late May to early July. 

Flowers are borne singly at each node, usually in dense racemes, and are zygomorphic. They are 

made up of five petals, arranged in a papilionoid structure: the posterior petal (flag or banner), two 

lateral petals (wings) and two petals partially fused together to form a boat-shaped keel at the base 

of the flower, that encloses the stamens and the stigma. Flowers have a small, pink corolla (11-15 

mm) which exceeds the calyx (Fig.3) and the fruits or legumes are 3-6 mm long carrying 1-2 dark 

brown seeds.  

Ononis masquillierii propagates both vegetatively and by seed. Pollination is predominantly 

mediated by bees. Secondary pollen presentation is mediated by a “pump” mechanism (Arroyo 

1981, Westerkamp 1997, López et al. 1999). First, the pollen is released onto the keel petals, then 

insect’s pressure on the keel forces a pump-like action of stigma and style which extrudes a small 

amount of pollen through an opening at keel tip. Pollen grains adhere to the insect’s abdomen 

(sternotribic mechanism), and, due to the gradual pollen emptying, more than one visit per flower is 

possible. 

 

 
Fig.3. Flowers of Ononis masquillierii Bertol. (Photo: Daniele 

Vivarelli).
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Voucher specimens of both Echium plantagineum and Ballota acetabulosa are preserved at the 

Laboratory of Biogeography and Cultural Ecology, Department of Geography, University of the 

Aegean, while the ones relative to Ononis masquillierii at the Herbarium of the University of 

Bologna (BOLO). 

 

 

 

2.2. Population characteristics 

 

The study on Echium plantagineum and Ballota acetabulosa was carried out during spring and 

summer 2005 in the island of Lesvos, belonging to the East Aegean Greek islands (Fig.4). The 

island (about 70 km long by 45 km wide at its maximum point) is characterized by a rugged 

topography, and, from a geological and vegetational point of view, divided into two different parts 

by the Gulf of Kalloni. The eastern part is in fact mainly formed of crystalline rocks, igneous 

peridotites and ophites, and is dominated by olive groves and, at higher altitudes, by pine forests; 

the western part is formed of igneous tertiary rocks, and phrygana is prevalent (Fig.5) 

The study relative to Ononis masquillierii was conducted during June and July 2006 in the “Gessi 

Bolognesi e Calanchi dell’Abbadessa Regional Park,” near Bologna, Italy (Fig.6). The Park (5.000 

ha) is located on the hills surrounding Bologna, and is characterized by a series of gypsum outcrops, 

a deep karst system and large erosional landforms (gullies). In the past, the park was strongly 

subject to human-induced disturbances (mainly mining, grazing, agricultural practices), but today 

the Park represents a very rich heterogeneous area, with sinkholes, woods, closed valleys, cliffs and 

gullies.   

For each species, eight populations were selected. Each population was separated by at least 1 

km from any other population, or natural barriers occurred between them (Fig.4, Fig.6). For Ononis 

masquillierii, all populations (except two) were located inside the “Gessi Bolognesi e Calanchi 

dell’Abbadessa Regional Park”. For Echium plantagineum and Ballota acetabulosa, two qualitative 

size categories were defined (small and large), based on approximate numbers of individuals (Table 

2). For both species, small populations were about half the size of large ones. Population size was 

estimated by roughly counting all the flowering plants in the area delimited by the limits of four 100 
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meters transects in the four cardinal directions, starting from the core area of the population. For 

Ononis masquillierii, it was impossible to distinguish and count all the individuals due to the 

vegetative propagation nature of the species, thus I counted all the flowering racemes in the 

population instead of the flowering plants. In this case, the variable “population size” was 

continuous, as the exact number of flowering racemes was recorded; for this species, location 

details can be found in Table 3. The eight Ononis masquillierii populations in this study covered a 

24-fold range in size. In addition, only for Ononis masquillierii, population density was calculated 

as the number of Ononis masquillierii flowering racemes per population area. For each population 

of this species, both population size and density estimates were done twice (one per round, see 

“Pollinator visitation”), and I considered the means as final values.    

Within each population, four patches of flowering plants (or racemes) were randomly selected, 

separated by 2-10 m. For each species, the size (area encompassed by the outer limits of the patch, 

m²) and density (number of flowering individuals (or racemes) per unit area) relative to each patch 

were determined. Patch density was calculated by counting the total number of flowering plants 

(racemes) within the patch (therefore calculating plants (racemes) /m²) for Ballota acetabulosa and 

Ononis masquiliierii, whereas for Echium plantagineum patch density was sampled by using a 

quadrat (0.25 m²) haphazardly placed within the patch (N = 10 for large patches, N= 5 for small 

patches, repeated for each round), then by counting the number of individuals within the quadrat. 

Density resulted from the mean of the measures. In addition, for each patch of Ballota acetabulosa, 

I determined the mean plant size (area occupied, m²), by haphazardly selecting 11 plants (10 from 

pollination test focal plants, and 1 from insect observation focal plants (per round), see below).  

In each patch, one observation unit was chosen for insect observations (see below). Observation 

units varied in size and shape, but contained approximatively from 10 to 100 flowers. For Echium 

plantagineum, five “focal” plants within the observation area were chosen, and, for each focal plant, 

the distance to the four nearest neighbouring flowering plants in four quadrants was measured 

(spatial distribution, cm). The average values were used at patch level. Moreover, only for Echium 

planatgineum, all the co-flowering species occurring in the observation units were identified (at 

species or genus level). 

The values of each variable used in the analyses (patch size, density, plant size and spatial 

distribution) came from the mean of the three (two in Ononis masquillierii) rounds.
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Fig.4. Study area of Echium plantagineum and Ballota acetabulosa. (A) location of Lesvos in the Aegean Sea; (B) 

studied populations (red circles: Echium plantagineum, blue circles: Ballota acetabulosa). Population names are 

displayed next to each circle (see Table 1 for details). 
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Fig.5. Map of Lesvos showing the main vegetational habitats. Source: University of the Aegean.
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Fig.6. Study area of Ononis masquillierii, located in the surrounding of Bologna, Itlay. 

The box shows the enlarged area, corresponding to the “Gessi Bolognesi e Calanchi 

dell’Abbadessa Regional Park”. Sampled populations are indicated by solid circles and 

site abbreviations. 

 

 

 

  

Species 

Echium plantagineum Ballota acetabulosa 

      

Population Abbreviation Size Population Abbreviation Size 

      

University Un large Theatre Th large 

Agra bridge Ab large Vasilika Va large 

Pedi Pe large Molyvos Mo large 

Agra donkey Ad large Skalachori Sk large 

Parakoila Pa small Parakoila Pa small 

Moria Mo small Mytilini castle My small 

Komi Ko small Petra Pe small 

Thermi Th small Pigi Pi small 

 

Table 2. Name and size of the 8 studied populations of Echium plantagineum and Ballota acetabulosa.
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Population Abbreviation Elevation (m) Location Population size 
Population 

density 

   Latitude Longitude   

       

Abbadessa Ab 215 44°24’29’’ N 11°26’42’’ E 643 0.77 

Casola Canina Cc 252 44°24’21’’ N 11°24’40’’ E 1991 0.42 

Castel de Britti Cb 232 44°25’06’’ N 11°26’26’’ E 151 1.54 

Croara Cr 239 44°25’34’’ N 11°23’28’’ E 455 1.57 

Eremo Er 290 44°24’47’’ N 11°24’02’’ E 1023 2.40 

Flaminia Fl 242 44°23’21’’ N 11°27’11’’ E 3575 1.02 

Monte Calvo Mc 345 44°25’33’’ N 11°22’26’’ E 737 7.08 

Monte Pieve Mp 244 44°24’27’’ N 11°28’09’’ E 832 0.88 

 

Table 3. Size (mean number of flowering racemes), density (mean number of flowering racemes/m²) and location of the 

8 studied populations of Ononis masquillierii. 

 

 

 

2.3. Flowering characteristics  

 

In order to determine the phenology of the flower, for each species 20 flowers were studied daily, 

every 4 hours, from bud until they withered. For each species one large population was selected for 

this study (“Un” for Echium plantagineum, “Th” for Ballota acetabulosa, “Fl” for Ononis 

masquillierii).  Each initial bud was selected at random on 20 different plants (or racemes, separated 

by at least 1m from any other in Ononis masquillierii), and on different positions within the plant, 

and marked with coloured plastic clips or with waterproof paint. Flower anthesis was considered to 

start when the flower opened or, in Ononis masquillierii, when the flag was fully erect, thereby 

enabling insect visits.  

In Echium plantagineum and Ballota acetabulosa, stigma receptivity and pollen viability were 

determined by observing morphological changes in stigmas and anthers of 15 flowers of different 

ages, collected at “Un” and “Th” populations respectively. In Ononis masquillierii, for stigma 

receptivity and pollen viability, three stages of flowering were identified as: 1) bud, 2) freshly open 

flower and 3) senescent flower. Stigma receptivity and pollen viability were assessed on five 
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different flowers per stage at “Fl” population by using the Perotexsmo KO test and the DAB test 

respectively (Dafni et al. 2005). In addition, on the same flowers the anther dehiscence was 

recorded.  

In Ononis masquillierii, nectar standing crop was also measured on five flowers per stage, this 

time in another large population (“Cc”), by inserting “drummond” microcapillary tubes along the 

staminal column, and measuring the length of nectar secretion in mm using a ruler.  

 

 

 

2.4. Pollination tests 

 

In order to evaluate the occurrence of pollen limitation, supplementary hand vs free pollination tests 

were performed in each of the eight populations of each plant species, during peak flowering. Forty 

focal plants were chosen in each population, ten in each patch, by selecting the closest plant to five 

random points chosen on each of two crossed transects through the centre of the patch. On each 

plant, two freshly open and receptive flowers were selected, marked and randomly assigned to two 

different treatment groups: hand cross pollination (overall N=320) or free pollination (overall 

N=320). Manual outcrossing was performed with pollen from three other individuals within the 

same population. The remaining flowers were left as an open pollinated control. 

In order to gain information about the breeding system of each plant species, tests of self-

compatibility and spontaneous self-pollination were carried out on 20 plants randomly chosen at 

“Pe”, “Th” and “Cc” populations (for Echium plantagineum, Ballota acetabulosa and Ononis 

masquillierii respectively), five plants per patch. Three comparable unopened buds were marked on 

each plant, and assigned to the following pollination treatments: hand-selfing (overall N=20), 

spontaneous-selfing (overall N=20) and hand-cross control (overall N=20). After that, the whole 

inflorescence was covered with a hydrophilic plastic bag to prevent insect visits. When the flowers 

opened, one flower was hand pollinated with self pollen, by taking two flowers of the same plant as 

pollen donors, the second flower was left unmanipulated and the third flower was pollinated with 

outcrossed pollen from two nearby individuals. This hand-crossing treatment was to test for a bag 
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effect on flower, fruit and seed development, and the results of this final treatment were compared 

with the productivity after hand crossing in natural conditions in the same population. 

All hand-pollinations consisted of a single application of an abundant quantity of pollen. 

Particular attention was paid to the stage of flowers used as pollen donors and receptors; in all cases 

pollen at the maximum viability was used as donor, and fully receptive stigma were used as 

receptors. Outcrossing pollen donors were selected at a distance of at least 10 metres from the focal 

plant, to avoid the possibility of selfing from vegetative propagules. In Ononis masquillierii, an 

estimate of the initial number of ovules was assessed from 10 freshly open flowers at “Cc” 

population, while for both Echium plantagineum and Ballota acetabulosa the number of ovules per 

flower was invariably four.  

At the end of the flowering season, fruits were collected from all the marked flowers, 

approximatively one month after pollination treatments, and viable seeds were counted. 

Reproductive success was determined as the number of filled viable seeds over the initial number of 

ovules (seed set). The small “Th” population of Echium plantagineum was completely lost because 

of the mechanical cutting of the vegetation. 

As a great percentage of Echium flowers was subject to livestock grazing, I evaluated the 

intensity of grazing by means of the same procedure used for determining patch density (see above), 

and by counting the number of grazed and ungrazed Echium plants within the quadrats at the end of 

the flowering season. Grazing was determined as the ratio of grazed Vs ungrazed plants. 

 

 

 

2.5. Insect visitation 

 

For each species, insect activity was monitored under natural conditions in all the 8 populations. 

One day of observation consisted of four 15-min (one per patch/observation unit) periods, repeated 

twice (AM and PM); each observation unit was monitored by one or two observers. During an 

observation period, I recorded the starting and ending time of the observation period and, for each 

individual which entered the observation area, I recorded the residence time within the observation 

unit, the guild, sex, behavior (nectar or pollen collector), the number of flowers and plants visited 
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(the latter only for Echium plantagineum and Ballota acetabulosa). Visitors were identified in the 

field to coarse taxonomic categories (i.e. “functional groups”, Fenster et al. 2004). In Echium 

plantagineum, I also recorded, if any, the visits to the co-flowering species. 

Each of the 8 populations of Echium planatgineum and Ballota acetabulosa was visited three times 

over the peak flowering period (except “Th” and “Ab” Echium populations that were visited twice), 

while all Ononis masquillierii populations were visited twice. Overall, a total of 22 days (44 hours), 

24 days (48 hours) and 16 days (32 hours) of observation were performed (on Echium 

plantagineum, Ballota acetabulosa and Ononis masquillierii respectively). 

In addition, weather variables were recorded (temperature, relative humidity, lux, wind speed, cloud 

cover). Observations were not made during non-optimal weather conditions (T<12°C, cloudy or 

rainy days, strong wind). 

After the four 15-min periods, 30 minutes were spent in a random collection of the main visitors 

within the population. Insects that had just visited an Echium, Ballota or Ononis flower were 

captured through a net, killed with ethil-acetate and put in separate vials for further identification 

(identification of insects visiting Echium plantagineum is still in progress). All the insects caught on 

Ononis flowers were used for pollen load analysis (see below), while, because of the large number 

of insects collected, I quantified pollen loads only on a representative subset of Ballota insects.  

In Echium plantagineum and Ballota acetabulosa, two aspects of pollinator behavior were 

considered: the mean number of insect visits per flower per 15’, i.e. visitation rate (a measure of 

pollination quantity), and the number of flowers visited within a plant by each pollinator (a measure 

of pollination quality). By contrast, in Ononis masquillierii, due to the very low visitation rate 

recorded through the observation intervals across all the 8 populations (mean: 0.0068 ±0.0009 

visits/flower*hour), I preferred to use the data relative to the random collection periods as an 

estimate of the insect abundance and biodiversity in each site. I therefore retained from the 

observation intervals data on insect behavior and flower handling time. 

Insect specimens are conserved at the Laboratory of Biogeography and Cultural Ecology, 

Department of Geography, University of the Aegean (for Echium plantagineum and Ballota 

acetabulosa), and at the BES Department, University of Bologna (for Ononis masquillierii).
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2.6. Pollinator effectiveness and fidelity 

 

Even if direct measures of pollination effectiveness are generally preferred, such as pollen removal 

or deposition on stigmas (Herrera 1987, Wilson & Thomson 1991, Fishbein & Venable 1996, 

Canto-Aguilar & Parra-Tabla 2000) or seed set after single visits (Dieringer 1992, Olsen 1997, 

Kandori 2002), in wide pollinator assemblages these methods are not reliables, and so pollination 

effectiveness must be derived through indirect approaches (Lindsey 1984, Petanidou et al. 1995a, 

Petanidou et al. 1998, Tepedino et al. 1999, Moeller 2005). 

The effectiveness of pollinators visiting Ballota and Ononis flowers was assessed by estimating the 

likely number of grains deposited on a stigma after a single visit, by visitors from different guilds. 

For this it is not necessary to determine absolute pollen carrying capacity, but to have a relative 

measure of pollen from a range of different flower visitors (relative pollinator effectiveness) 

(Lamborn & Ollerton 2000). Pollen samples were removed by means of small equal-size pieces of 

fuchsin gel (5 mm ø, Beattie 1971) from all the insects caught in every site during the 30’ random 

collection (for Ononis masquillierii) or from the most representative insect taxa collected in each 

site (for Ballota acetabulosa). Each separate piece of gel was pressed once firmly on the head, 

thorax and abdomen, in order to localize the part of the body responsible for the pollen transfer. The 

pollen was then counted and identified under a light microscope; a pollen library was created by 

collecting specimens of pollen of the most abundant co-flowering species in the area.  

In addition, pollinator fidelity was determined by analysing a sample of the scopal pollen of 

females bees (all bees for Ononis masquillierii, only megachilids for Ballota acetabulosa). 

Overall, 112 Ononis and 442 Ballota insects were examined. 
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2.7. Data analysis 

 

For each plant species, the data relative to reproductive success had high non-normal distributions 

(through the Shapiro test), and transformations couldn’t be succesfully achieved. Non parametric 

tests were therefore used. Variation in reproductive success after different treatments was tested 

with Kruskal-Wallis ANOVA (K-S) followed by separate Mann-Whitney U-tests (M-W).  

In Echium plantagineum and Ballota acetabulosa, the effects of population size (categorical 

variable) and among population variation on seed sets were tested through a two-level mixed nested 

ANOVA design, with populations (random factor) nested within size treatments (fixed factor), and 

patches as genuine replicates. An analogous nested ANOVA model was used for testing the effects 

of grazing on productivity values in Echium plantagineum. In Ononis masquillierii, population size 

was a continuous variable, and its effect on seed sets was investigated through Pearson's product-

moment correlation. In Echium plantagineum and Ballota acetabulosa, the effect of population size 

and among population variation on both visitation rate and number of flowers visited within a plant 

were always tested by means of a mixed nested ANOVA design (three-level), with patch considered 

in this case as an additional third level (random factor), and rounds as temporal replicates.  

Multiple regression analyses (backward procedure) were performed to analyse the effects of 

different variables on seed sets, visitation rate, and number of flowers visited within a plant (see 

Results for details); in case of non-normal distributions, variables were conveniently transformed. 

Generally, for each response variable, pairwise t-tests multiple comparisons (with Bonferroni 

correction) were used to detect differences among populations, if any. 

In Ballota acetabulosa, two-level mixed nested ANOVAs were used to test the effects of population 

size and among population variation on Shannon indices, and on megachilids female relative 

frequency and fidelity.  

In Ononis masquillierii, differences in pollen load, pollen placement and fidelity among groups as 

well as differences in time spent per flower among groups were analysed with Kruskal-Wallis 

ANOVA (K-S) followed by separate Mann-Whitney U-tests (M-W). 

All the regressions referred to Pearson's product-moment correlation. 

All calculations were performed using R version 2.3.0. (R Development Core Team 2004). 
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3a. Results: Echium plantagineum 

 

3.1a. Flowering characteristics 

 

The duration of flowering was approximately one month, starting in early-middle April and ending 

in middle May. The average flower life span was 1.17±0.02 days.  

The flower-opening pattern includes morphological and functional changes, flowers are 

protrandrous. In the first phase (male phase), the stamens protrude from the corolla, while the 

stigma is short, hidden inside the corolla, with the two stigmatic lobes not spiltted. In this phase a 

great amount of pollen is presented by anthers. In the second phase (female phase), the style 

elongates beyond the anthers, and the two stigmatic lobes diverge, meaning that stigma becomes 

receptive. By contrast, the pollen release is strongly reduced. As new flowers open each day, both 

sexual phases are simultaneously present in the same plant.  

 

 

 

3.2a. Breeding system, pollen limitation and grazing 

 

Only 0.2% of total flowers in the hand-selfing and spontaneous selfing treatments set seeds, while 

hand crossed flowers significantly set more seeds per flower (M-W U-tests; P<0.001, Fig.7), 

indicating that Echium plantagineum is not capable of induced or autonomous self-pollination. Bags 

didn’t affect the production of seeds (M-W U-tests; P>0.05). 
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Fig.7. Reproductive success of Echium plantagineum in unpollinated, hand 

selfed and hand crossed flowers conducted at Fl site. Columns represent the 

mean number of viable seeds per ovule. Mean seed sets are displayed above the 

bars in the graph. 

 

 

 

The number of seeds per flower after hand-crossed pollen addition ranged from zero to four 

(pooled populations). 

Pollen limitation was significantly present in all population except “Mo”, with a mean value of 

0.17±0.02 (Table 4). To investigate if any variation in seed set (after hand-crossed and 

nonsupplemeted treatments, and their difference, i.e. “pollen limitation index”) occurred among 

populations and between population size categories, a two-level nested mixed ANOVA model was 

used, in which populations (random factor) were nested within size treatments (fixed factor), and 

patches considered as genuine replicates. The model was unbalanced as one population (“Th”) was 

totally lost because of the clearance of the site. 

Population size had no significant effect on pollen limitation index (Table 5), indicating that large 

and small populations were equally subject to pollen limitation, and no significant differences 

among populations were detected. On the contrary, population size affected the productivity of both 

hand-crossed and non-supplemented flowers, being large populations significantly more productive 
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than small ones (Fig.8) (Hand-crossed seed set in large Vs small populations: 82.1±2.4 Vs 

61.8±6.7; nonsupplemented seed set in large Vs small populations: 47.0±5.3 Vs 27.3±3.1. Mean 

values, backtransformed data). 

 

 

    

Population Size Hand crossed Free pollinated M-W 

     

Un large 0.824±0.003 0.476±0.004 *** 

Ab large 0.760±0.008 0.21±0.01 *** 

Pe large 0.858±0.003 0.591±0.003 *** 

Ad large 0.884±0.002 0.513±0.007 *** 

Pa small 0.698±0.008 0.30±0.02 * 

Mo small 0.57±0.02 0.26±0.02 ns 

Ko small 0.69±0.01 0.271±0.005 *** 

 

Table 4. Results of separated pairwise Mann-Whitney U-tests for seed-set in hand-crossed and non-supplemented 

flowers in 7 populations of Echium plantagineum. Mean ± SE are given. 

 Signif. codes:  0 *** 0.001 ** 0.01 * 0.05, ns= not significant. 

 

     

Trait Source df MS F 

     

Pollen limitation index Population size 1 46.9 0.2567 ns 

 Population (size) 5 182.7 0.7332 ns 

     

     

Free seed set Population size 1 2651.5 6.2981· 

 Population (size) 5 421.0 1.5020 ns 

     

     

Cross seed set Population size 1 2837.5 6.6096* 

 Population (size) 5 429.3 1.7378 

 

Table 5. ANOVA results for the effects of population size and among-population variation on pollen limitation index 

(hand crossed-nonsupplemented seed set), free (nonsupplemented) seed set, and cross (hand crossed) seed set.  

df=degrees of freedom, MS= Mean Square values, F=F-test values.  

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 
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    a             b 

 

Fig.8. Boxplot of productivity after a) hand-pollinated (cross) and b) nonsupplemented (free) 

treatments in large and small sites (populations). Medians are indicated by the central lines, the lower 

and upper edges of the box are the 1st and 3rd quartiles respectively. The whiskers extend to a 

maximum of 1.5 times the inter-quartile range, the points outside the whiskers are potential outliers. 

 

 

 

Recovery of the marked flowers was very variable, ranging from complete recovering to less 

than 50% (“Pa” and “Mo” populations). Livestock grazing was the main responsible for this loss: an 

analogous nested mixed ANOVA model (see above) was used to compare the effects of population 

size and among-population variation in the extent of grazing; data revealed how grazing activity for 

small populations was higher and statistically different (ANOVA, P=0.02) from that for large 

populations (Table 6, Fig.9). In detail, the mean % of grazed plants in small populations was almost 

four times higher than in large populations (74.6±9.2; 20.4±7.0 respectively) 
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Trait Source df MS F 

     

Grazed plants Population size 1 20177.1 11.7138* 

 Population (size) 5 1722.5 2.4935· 

 

Table 6. ANOVA results for the effects of population size and among-population variation on grazing activity (% of 

grazed plants per 0.25 m²).  

df=degrees of freedom, MS= Mean Square values, F=F-test values. 

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 

 

 

 

 
Fig.9. Boxplot of grazing activity (% of grazed plants per 0.25 

m²) in large and small sites (populations). Medians are 

indicated by the central lines, the lower and upper edges of the 

box are the 1st and 3rd quartiles respectively. The whiskers 

extend to a maximum of 1.5 times the inter-quartile range, the 

points outside the whiskers are potential outliers.
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In addition, a negative significant correlation was found between grazing activity and patch density 

(number of Echium flowers per area, Log-transformed data), indicating that grazing pressure was 

stronger in sparser patches than in denser ones (r = -0.59, P<0.001). 

Again, grazing activity (expressed as the  % of grazed plants) influenced the seed production of the 

remaining plants, as a more intense grazing pressure resulted in a lower productivity for both 

handcrossed and unmanipulated treatment (r = -0.62, P<0.001; r = -0.50, P<0.01 respectively). 

Summarized for all populations, the multiple regression analysis (backward procedure) 

performed on the cross-free seed set (pollen limitation index), by taking into account the effects of 

insect visitation rate (number of visits per Echium flower * 15’, Log-transformed data), mean 

number of visited flowers (per plant per insect *15’, Log-transformed data), patch size (Log-

transformed data), patch density (number of Echium flowers per 0.25 m², Log-transformed data), 

and spatial distribution (the mean distance to the nearest flowering plant, Log-transformed data), 

revealed that none of the considered variables was important (P>0.05). The same occurred when 

large and small populations were kept separated. 

 

 

 

3.3a. Insect visits 

 

Insect visitation rate (number of visits per Echium flower * 15’, Log-transformed data) and mean 

number of visited flowers (per plant per insect *15’, Log-transformed data) were modelled on 

population size (fixed factor), population (random factor) and patch (random factor) by means of a 

three-level nested mixed ANOVA model, to test whether significant effects emerged. Rounds were 

considered as genuine temporal replicates. 

Population size didn’t significantly affect the number of insect visits to Echium flowers; by contrast 

insect visitation rate was somewhat different among populations, but not among patches (Table 7). 

Pairwise t-tests multiple comparisons (with Bonferroni correction) indicated that “Ko” (small) and 

“Un” (large) differed from three other populations, being the less visited populations (Fig.10).
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Insects visited the same number of flowers per plant in large and small populations, and neither 

among population nor among patch differences were detected (Table 7).  

 

 

     

Trait Source df MS F 

     

Visitation rate Population size 1 1.670 0.6044 ns 

 Population (size) 6 2.763 17.0556*** 

 Patch (population (size)) 24 0.162 0.2819 ns 

     

     

Flowers/plant*insect Population size 1 0.107 1.2442 ns 

 Population (size) 6 0.086 1.3231 ns 

 Patch (population (size)) 24 0.065 1.3000 ns 

 

Table 7. ANOVA results for the effects of population size, among-population and among-patch variation on insect 

visitation rate (number of visits/flower*15’), and number of Echium flowers visited/plant*insect. Data from observation 

trials.  

df=degrees of freedom, MS= Mean Square values, F=F-test values. 

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 
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Fig.10. Boxplot of insect visitation rate (number of visits per Echium flower * 15’) in 8 

populations of Echium plantagineum (see text for details on populations). Medians are indicated 

by the central lines, the lower and upper edges of the box are the 1st and 3rd quartiles 

respectively. The whiskers extend to a maximum of 1.5 times the inter-quartile range, the points 

outside the whiskers are potential outliers. Values significantly different (pairwise t-tests 

multiple comparisons, P<0.05) are indicated by different superscript letters (a=Ab, b=Ad, c=Ko, 

d=Mo, e=Pa, f=Pe, g=Th, h=Un). 
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Even if the patch effect didn’t result significant in the nested anova model, a multiple regression 

analysis was performed, by using the same two response variables as before and a series of 

indipendent variables as covariates. The initial model was started including patch size (Log-

transformed data), patch density (Log-transformed data) and spatial distribution (Log-transformed 

data) in both cases.  

The final model (after backward procedure) indicated that only patch density had an effect on 

visitation rate (+, P<0.001, multiple R-squared = 0.39, Fig.11), while spatial distribution had an 

influence on the mean number of visited flowers per plant (+, P<0.05, multiple R-squared = 0.17). 
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Fig.11. Visitation rate (mean number of visits per Echium 

flower * 15’) as a function of patch density (mean number 

of Echium flowers per 0.25m²) (Log-transformed data). 

Data are pooled over 8 populations. 

 

 

 

Many plant species belonging to different families co-flowered with Echium plantagineum (see 

Appendix 1).The mean proportion of insect visits to these species compared to the visits to Echium 

flowers was in most cases less than 1%, and only visits to Trifolium nigrescens accounted for more 

than 5% of the total visits (8.8%). In addition, Trifolium nigrescens was well widespread across the 
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studied Echium populations, being present in 7 of 8 sites. For these reasons, it was then considered 

as the most important co-flowering species. To check whether the presence of this legume led to 

facilitation, competition or had no influence with respect to Echium plantagineum pollinator 

services, a correlation test between the visitation rate to Echium flowers (Log-transformed data) and 

the occurrence of Trifolium nigrescens inflorescence was performed (Log-transformed data). No 

relationship was found (P>0.05). 
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3b. Results: Ballota acetabulosa 

 

3.1b. Flowering characteristics 

 

Ballota acetabulosa belongs to the group of late-spring/summer flowering species in Greece 

(Petanidou & Vokou 1993), with an anthesis lasting about one month, from early June to early July. 

Mean flower duration was 1.4±0.2 days.  

Flowers are protrandrous: during the male phase the style is initially curved inwards, hidden 

among the dehiscent anthers. While reaching the female sexual maturity, the style starts to spread 

its stigmatic lobes always remaining enclosed within the corolla, and stamens begin to wilt. The 

dicoghamy is asynchronous, as male and female flower phases occur simultaneously on a given 

plant. The anthers face downward, providing nototribic pollination. 

 

 

 

3.2b. Breeding system and pollen limitation 

 

Recovery of the marked flowers was more than 90%. 

Hand crossed flowers in enclusure condition yielded significantly more seeds than both hand 

selfed and spontaneously selfed flowers (M-W U-tests; P<0.001, Fig.12); these last two treatments 

set a statistically equivalent number of seeds per ovule (M-W U-tests; P>0.05), falling nearly to 

zero. No significant effects of bags were found (M-W U-tests; P>0.05). 
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Fig.12 Reproductive success of Ballota acetabulosa in unpollinated, hand selfed 

and hand crossed flowers conducted at Th site. Columns represent the mean 

number of viable seeds per ovule. Mean seed sets are displayed above the bars 

in the graph. 

 

 

 

Generally, only a small fraction of ovules set seeds, as one seed per flower was the most 

common output even after pollen hand supplementation. 

Overall, hand crossing significantly increased the seed set compared with natural pollination 

treatment in 6 of 8 populations (Table 8). Spatial components of seed set were investigated by 

means of a two-level nested mixed ANOVA model, with populations (random factor) nested within 

size treatments (fixed factor), and patches considered as genuine replicates. The response variables 

were in turn seed set after hand-crossed and open natural treatments, and seed set resulting from the 

difference of these two treatments (i.e. “pollen limitation index”). 

The intensity of pollen limitation didn’t differ among populations, and populations of different sizes 

were equally subject to inadequate pollen receipt (Table 9). Mean pollen limitation index for small 

populations was in fact comparable to large ones (1.5±0.7 and 1.4±0.5 respectively). Seed set 

resulting from hand-outcrossing was not associated with population size, and was not different 

among populations. Population size had no effect on open pollinated seed set as well, while 
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significant differences among populations were found, with “Pa” population setting the lowest 

number of seeds per ovule (0.08±0.01).  

 

 

    

Population Size Hand crossed Free pollinated M-W 

     

Th large 0.216±0.003 0.13±0.01 * 

Va large 0.216±0.005 0.14±0.01 * 

Mo large 0.222±0.003 0.11±0.01 ** 

Sk large 0.206±0.004 0.172±0.007 ns 

Pa small 0.190±0.006 0.08±0.01 ** 

My small 0.263±0.005 0.194±0.006 * 

Pe small 0.256±0.002 0.151±0.008 ** 

Pi small 0.232±0.003 0.189±0.006 ns 

 

Table 8. Results of separated pairwise Mann-Whitney U-tests for seed-set in hand-crossed and non-supplemented 

flowers in 8 populations of Ballota acetabulosa. Mean ± SE are given. 

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05, ns= not significant. 

 

     

Trait Source df MS F 

     

Pollen limitation index Population size 1 2.13 0.0506 ns 

 Population (size) 6 42.08 1.3660 ns 

     

     

Free seed set Population size 1 10.52 0.1395 ns 

 Population (size) 6 75.39 2.7108* 

     

     

Cross seed set Population size 1 22.14 0.8870 ns 

 Population (size) 6 24.96 0.8320 ns 

 

Table 9. ANOVA results for the effects of population size and among-population variation on pollen limitation index 

(hand crossed-nonsupplemented seed set), free (nonsupplemented) seed set, and cross (hand crossed) seed set.  

df=degrees of freedom, MS= Mean Square values, F=F-test values. 

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 
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In order to check whether seed set was influenced by covariates, a muliple regression analysis 

was performed (backward procedure). The tested response variable was the cross-free seed set 

(pollen limitation index), while insect visitation rate (number of visits per Ballota flower * 15’, 

squareroot-transformed data), mean number of visited flowers (per plant per insect *15’, Log-

transformed data), patch size (Log-transformed data), patch density (number of Ballota flowering 

plants per patch area, Log-transformed data ) and mean plant size (Log-transformed data) were used 

as covariates. None of the considered explainatory variables affected seed set (P>0.05, multiple R-

squared = 0.25). 

 

 

 

3.3b. Insect visits 

 

In order to verify if population size and among-population variation had any influence on insect 

visitation rate (number of visits per Ballota flower * 15’, squareroot-transformed data) and mean 

number of visited flowers (per plant per insect *15’, Log-transformed data), a three-level nested 

mixed ANOVA model was built, with population size (fixed factor), population (random factor) 

and patch (random factor) as discriminant factors, and rounds considered as genuine temporal 

replicates. In addition, a striking among-population variation in the magnitude of honey bees (Apis 

mellifera L.) abundance was found, which represented the dominant pollinators in some populations 

(“Sk” and “Mo”) and were nearly absent in others (“Pi”, “Th”, “Va”, “Pa”) (see Appendix 2); it was 

likely that the presence of beehives near to the populations accounted for these differences, thus 

biasing the mean values relative to insect visitation rate and number of visited flowers. Thereby, all 

multiple regressions analyses were performed both considering and not considering the contribution 

of Apis mellifera. 
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With Apis mellifera 

Results are shown in Table 10. 

The eight populations of Ballota acetabulosa shared a similar insect visitation rate, and population 

size didn’t result a significant discriminant factor. By contrast, a patch effect was found (P<0.05). 

Thereby, a multiple regression analysis was performed (backward procedure), and the effects of 

patch size (Log-transformed data), patch density (number of Ballota flowering plants per patch 

area, Log-transformed data) and mean plant size (Log-transformed data) on visitation rate 

(squareroot-transformed data) were investigated. 

None of the variables was significant, and only plant size had a (marginal) positive effect (P = 0.08, 

multiple R-squared = 0.14). 

When considering the mean number of flowers visited within a plant per insect, population size 

was found to have a null influence, and no among-population variation was found. The same 

multiple regression analysis as before was performed, and no variable resulted statistically 

significant (multiple R-squared = 0.09). 

 

Without Apis mellifera 

Results are shown in Table 10. 

In this situation, a stronger among-population variation in visitation rate was found, even if not so 

marked, while population size always resulted not significant. The two populations that presented 

the highest visitation rates by honey bees (“Sk” and “Mo”), dropped dramatically in their visitation 

rate when honey bees were not taken into account, with a loss of 62% and 46% respectively. 

Multiple comparisons (pairwise t-tests with Bonferroni correction) highlighted how these two 

populations differed from three other populations, showing the lowest visitation rates (P<0.05, 

Fig.13). 

Form multiple regression analysis (multiple R-squared = 0.60), visitation rate differed as a 

function of patch density (-, P<0.05) and  plant size (+, P<0.001), while patch area influence was 

less clear (?, P<0.01) (Fig.14). 

When considering the number of flowers visited within a plant per insect, no differences with 

the previous situation (with Apis mellifera) emerged.  
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Trait Source df MS F 

     

With Apis mellifera     

     

Visitation rate Population size 1 0.007 0.3684 ns 

 Population (size) 6 0.019 0.9048 ns 

 Patch (population (size)) 24 0.021 1.9091* 

     

     

Flowers/plant*insect Population size 1 0.411 0.9786 ns 

 Population (size) 6 0.420 1.2139 ns 

 Patch (population (size)) 24 0.346 0.8759 ns 

     

     

Without Apis mellifera     

     

Visitation rate Population size 1 0.107 2.5476 ns 

 Population (size) 6 0.042 3.5000* 

 Patch (population (size)) 24 0.012 1.2000 ns 

     

     

Flowers/plant*insect Population size 1 1.281 1.7500 ns 

 Population (size) 6 0.732 1.7897 ns 

 Patch (population (size)) 23 0.409 0.9738 ns 

 

Table 10. ANOVA results for the effects of population size, among-population and among patch variation on insect 

visitation rate (number of visits/flower*15’), and number of Ballota flowers visited/plant*insect, with and without the 

contribution of Apis mellifera. Data from observation trials. df=degrees of freedom, MS= Mean Square values, F=F-test 

values. Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 



3.3b Results: Ballota acetabulosa-Insect visits  37   

 

 
Fig.13. Boxplot of insect visitation rate (number of visits per Echium flower * 15’) in 8 populations of Ballota 

acetabulosa. Apis mellifera excluded from the analysis. Medians are indicated by the central lines, the lower and upper 

edges of the box are the 1st and 3rd quartiles respectively. The whiskers extend to a maximum of 1.5 times the inter-

quartile range, the points outside the whiskers are potential outliers. Values significantly different  (t-tests multiple 

comparisons, P<0.05) are indicated by different superscript letters (a=Mo, b=My, c=Pa, d=Pe, e=Pi, f=Sk, g=Th, 

h=Va).  
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Fig.14. Visitation rate (mean number of visits per Ballota acetabulosa flower * 15’, squareroot-transformed) as a 

function of patch area (m², Log-transformed), patch density (number of Ballota flowering plants per patch area, 

Log-transformed) and plant size (m², Log-transformed). Apis mellifera excluded from the analysis. Data are pooled 

over 8 populations. 
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3.4b. Insect diversity, effectiveness and importance 

 

A total of 28 insect genera were collected (through random walks) across the eight populations of 

Ballota acetabulosa, during its entire flowering period. Among these, bees accounted for more than 

98%, representing three families (Fig.15). Flies (Bombylius spp.), butterflies (Thymelicus spp.) and 

wasps were present at a very low percentage (1.4%, 0.2% and 0.4% respectively) (see Appendix 2). 
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Fig.15. Proportions of insect families visiting Ballota acetabulosa. Only Hymenoptera 

are considered. Data are pooled over 8 populations and 3 rounds.   

 

 

 

Apis (mellifera) was the most frequent genus, accounting for 37% of total insects, followed by 

Bombus spp. (18%) and Chalicodoma spp. (16%). Females were in general over-represented 

(64.0%). All bees accidentally or intentionally contacted the flower reproductive structures.  

Summarized for all populations, patterns of insect abundance indicated that most of the genera 

were represented by few individuals (<10) (Fig.16), and the same occurred at population level.
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Populations greatly differed in their insect fauna abundance and composition. For example, 

honey bees clearly dominated the “Sk” and “Mo” populations, whereas they were absent or nearly 

absent in “Va” and “Pa” populations. The same was true for most of the genera recorded, with the 

exception of Chalicodoma spp., that showed a more homogeneous distribution among populations. 

To check if genera collected in few populations were a) widespread across Ballota’s distributional 

range but uncommon, or b) restricted to a small area, for each genus the range size (the maximum 

distance between occupied sites) was plotted against the number of sites where the insect was 

recorded. In the first case a positive saturating relationship was expected, otherwise a linear one. 

A lack of fit test corroborated the first hypothesis (P<0.001) (Fig.17).   
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Fig.16. The distribution of abundance classes relative to Ballota acetabulosa 

flower insects (only Hymenoptera). Data refer to insect collection through 

random walks, and are pooled over 8 populations and 3 rounds. 
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Fig.17. Range size (the maximum distance between 

occupied sites by each genus (only Hymenoptera), 

expressed in Km) Vs the number of sites occupied by each 

genus in eight populations of Ballota acetabulosa. Data 

refer to insect collection through random walks, and are 

pooled over 8 populations and 3 rounds. 

 

 

 

To compare the diversity of potential pollinators’ assemblages among populations and between 

population size, the Shannon index relative to each population was computed (only bees considered, 

genus level, from random walks collection). A two-level mixed nested ANOVA model was used, 

with populations (random factor) nested within size treatments (fixed factor), and rounds considered 

as genuine replicates. As the presence of beehives could have biased the results, the Shannon 

indices were calculated both with and without the contribution of Apis mellifera (Table 11). 
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Trait Source df MS F 

     

With Apis mellifera     

     

Shannon index Population size 1 0.141 0.2311 ns 

 Population (size) 6 0.610 7.625*** 

     

     

Without Apis mellifera     

     

Shannon index Population size 1 0.141 0.4184 ns 

 Population (size) 6 0.337 4.493** 

 

Table 11.  ANOVA results for the effects of population size and among-population variation on Shannon index (only 

bees considered, genus level), with and without the contribution of Apis mellifera. Data from collection through random 

walks. df=degrees of freedom, MS= Mean Square values, F=F-test values. 

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 

 

 

 

In both cases small and large populations had a similar insect diversity, while populations markedly 

differed each other. When honey bees were considered, “Pa” (predominantly visited by 

Chalicodoma spp. and Amegilla spp.) and “Sk” (predominantly visited by Apis mellifera) 

population exhibited the lowest Shannon values (0.8±0.2 and 0.77±0.05 respectively), whereas 

excluding honey bees, “Pa” (where honey bees were nearly absent) resulted the less diverse 

population (0.7±0.2). 

As both observational and catching data showed that Ballota acetabulosa flowers were 

pollinated by numerous insect genera, with various abundance and behavior, it was reasonable to 

cluster pollinators into different functional groups. Categories were created according to i) insect 

life-style (i.e. solitary Vs social), ii) broad taxonomic position (i.e. family), and iii) sex. Insect body 

size didn’t result a good discriminant feature because of the overlapping of most categories. 
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The following guilds were created: 

 

� Solitary Megachilidae females bees (Mf); 

� Solitary Megachilidae males bees (Mm); 

� Solitary Apidae females bees (Af); 

� Solitary Apidae males bees (Am); 

� Solitary Halictidae females + males bees (Hfm); 

� Social bees (AB); 

� Others (parasitic bees, butterflies, beetles, Oth). 

   

A list of the insect genera comprised in each functional group is presented in Appendix 2. 

 

Observational and catching data gave equivalent results relative to the frequency of each functional 

group (r = 0.77, P<0.05). As I wanted to associate different variables obtained through observations 

(flower handling time, number of flowers visited) to each guild, the former data were preferred to 

compute the analyses relative to the abundance and importance of each guild.  

The most abundant guild was represented by AB (including Apis mellifera and Bombus spp), 

accounting for 34% of total visits, then Mf (32%) and Af (21%). Each guild strongly differed in its 

relative abundance among populations. For instance, the Mf guild was predominant in “Pa” 

population (78% of total visits), while it was under represented when the AB guild was prevalent 

(“Sk” population, 3%). By contrast, the AB guild relative abundance ranged from 84% in “Sk” 

population to 0% in “Pa” population (Table 12). 
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 Population 

Functional group Mo My Pa Pe Pi Sk Th Va 

         

Mf 21.1 44.7 77.9 20.0 22.5 3.0 58.3 16.0 

Mm 0.0 6.4 9.8 8.6 16.9 0.0 18.3 3.2 

Af 10.5 11.7 12.3 35.7 31.0 13.4 16.7 35.2 

Am 0.0 2.1 0.0 1.4 0.0 0.0 3.3 1.6 

Hmf 3.5 2.1 0.0 0.0 14.1 0.0 0.0 1.6 

AB 59.6 22.3 0.0 31.4 11.3 83.6 3.3 41.6 

Oth 5.3 10.6 0.0 2.9 4.2 0.0 0.0 0.8 

 

Table 12. Relative abundance (% of total visits) of each functional group (see text for details) in each Ballota  

acetabulosa population. Data from observation sessions, pooled rounds. 

 

 

 

To compare the guild diversity among populations and population sizes, the Shannon index was 

calculated, and a two-level mixed nested ANOVA model was used, with populations (random 

factor) nested within size treatments (fixed factor), and rounds considered as genuine replicates. 

Again, Apis mellifera was in turn taken into account and omitted. Results are presented in Table 13. 
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Trait Source df MS F 

     

With Apis mellifera     

     

Shannon index Population size 1 0.486 1.7802 ns 

 Population (size) 6 0.273 4.3333** 

     

     

Without Apis mellifera     

     

Shannon index Population size 1 0.565 1.7937 ns 

 Population (size) 6 0.315 3.9375* 

 

Table 13. ANOVA results for the effects of population size and among-population variation on Shannon index, 

(functional group level), with and without the contribution of Apis mellifera. Data from observation trials. 

df=degrees of freedom, MS= Mean Square values, F=F-test values. 

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 

 

 

 

Population size had no effect in both cases (P>0.05), while, as expected, the Shannon index was 

different among populations (P<0.05). With honey bees not omitted, the same pattern found when 

insects were grouped into genera was found. “Pa” and “Sk” resulted in fact the less diverse 

populations (0.64±0.07 and 0.4±0.2 respectively). These two populations remained the last ranked 

when honeybees were not considered (0.64±0.07 and 0.3±0.2 respectively). 

Summarized for all populations, the number of intraplant flowers visited per insect guild ranged 

from 2.7 (Hmf) to 7.7 (AB, Apis mellifera excluded), while flower handling time ranged from 3.1 

(Am) to 23 (Hmf) (Table 14). 
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Functional group Visitation rate Flowers visited Flower handling time 

    

Mf 0.020±0.003 4.6±0.4 6±1 

Mm 0.0041±0.0008 3.1±0.4 5.1±0.8 

Af 0.013±0.002 5.4±0.7 5.9±0.8 

Am 0.0006±0.0002 5±2 3.1±0.6 

Hmf 0.0013±0.0005 2.7±0.5 23±9 

AB (with Apis mellifera) 0.021±0.004 6.0±0.5 5.6±0.4 

AB (without Apis mellifera) 0.007±0.002 7.7±0.9 4.2±0.6 

 

Table 14. Summary of results of observation sessions. Visitation rate (number of visits per Ballota acetabulosa flower * 

15’), number of visited flowers/plant*insect (15’) and flower handling time (sec) are displayed. Mean ± SE are given. 

Insects are grouped by functional groups (see text for details), populations and rounds are pooled. 

 

 

 

To evaluate the relative importance of each functional group as pollinator, an index of 

importance was calculated, as the product of mean guild relative abundance and mean pollen load 

(on head, thorax and abdomen). Both variables were referred to the overall insects scored (pooled 

populations and rounds). 

Mf guild yielded the greatest amounts of Ballota pollen, and was present at high frequencies across 

all populations. This in turn implied it resulted the most effective guild for Ballota acetabulosa 

(Table 15). Honey bees greatly contributed to Ballota pollen service especially because of their high 

relative abundance; when omitted from the analysis, the AB importance index dropped from the 

second rank position to the fourth one, while Mf remained the most important guild. 

In all functional groups (except Af), the thorax resulted the body part mainly deputed to pollen 

transport, whereas few pollen was placed on the abdomen. In contrast, insects of the Af guild 

preferentially contacted the anthers with their heads (Fig.18).   
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Functional group N 

Mean pollen grains 

per 15mmø sample ± 

SE  

Mean relative 

frequency 
Importance index 

     

With Apis mellifera     

     

Mf 121  (1073±77) e 0.333 357.3 

Mm 99  (841±106) d,f 0.071 59.7 

Af 103 (347±39) a,b,d 0.211 73.2 

Am 29  (121±15) c,d 0.010 1.2 

Hmf 11  (503±148) a,b,c,d,f 0.022 11.1 

AB  79  (364±50) a,b,d 0.352 128.1 

     

     

Without Apis mellifera     

     

Mf 121  (1073±77) e 0.439 471.0 

Mm 99  (841±106) d,f 0.094 79.1 

Af 103 (347±39) b,d 0.279 96.8 

Am 29  (121±15) a,c,d 0.013 1.6 

Hmf 11  (503±148) a,b,c,d,f 0.030 15.1 

AB  42  (158±29) a,c,d 0.146 23.1 

 

Table 15. The following data are displayd: sample size of insects used for the pollen load analysis; 

mean number of Ballota acetabulosa pollen grains (per 15ømm sample) adhering to bodies of insect 

captured on flight (head + thorax + abdomen), after having visited a Ballota flower (pooled 

populations); mean relative frequency of each insect guild (after 48 hours of observations); 

importance index, i.e the product of mean pollen load and mean relative frequency. Insects are 

grouped into functional groups (with and without Apis mellifera, see text for details). Values 

significantly different  (P<0.05) are indicated by different superscript letters (pairwise t-tests with 

Bonferroni correction, Log-transformed data). 
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Fig.18. Ballota acetabulosa pollen distribution on the three main body 

parts of insects visiting the plant (pooled populations). Percentage are 

relative to means. Insects are grouped by functional groups (see text for 

details). 

 

 

 

As Mf resulted the most important guild, its relative abundance and fidelity (the proportions of 

Ballota pollen on ventral scopa) were investigated in relation to both population size and among 

population variation (two-level nested mixed ANOVA model, with populations (random factor) 

nested within size treatments (fixed factor), and rounds considered  as genuine temporal replicates) 

(Table 16). As far as fidelity concerns, six populations were considered (three small and three 

large), as in “Va” and “Pi” populations none or very few insects were examined for pollen 

composition. 

The Mf abundance was never influenced by population size (P>0.05), while a significant among 

population difference emerged (P<0.05, see Table 12 for details). 

Data relative to fidelity showed pronounced percentages of Ballota pollen on ventral scopa (mean ± 

SE: 96.6±0.7); population size had a null effect on it, and populations didn’t differ each other 

(P>0.05).  
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Trait Source df MS F 

     

Mf relative frequency 

(With Apis mellifera) 
Population size 1 1245.2 2.1637 ns 

 Population (size) 6 575.5 3.7197* 

     

     

Mf relative frequency 

(Without Apis mellifera) 
Population size 1 962.3 1.8577 ns 

 Population (size) 6 518.0 2.8122* 

     

     

Mf fidelity Population size 1 0.0031 1.2400 ns 

 Population (size) 4 0.0025 1.6667 ns 

 

Table 16. ANOVA results for the effects of population size and among-population variation on Mf (Megachilidae 

female bees) relative frequency (proportions of Mf guild on total visits, Apis mellifera retained and omitted, angular-

transformed data), and Mf fidelity (proportions of Ballota pollen, angular-transformed data) .  

df=degrees of freedom, MS= Mean Square values, F=F-test values. 

Signif. codes:  0 *** 0.001 ** 0.01 * 0.05 · 0.1, ns=not significant. 
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The two most represented insect families (Apidae and Megachilidae, see Fig.5) were negatively 

correlated in their absolute abundance (logarithmic relationship, P<0.05, Fig.19). The same 

relationship was found when considering the Mf and AB abundance (with Apis mellifera and 

Bombus spp., and only Apis mellifera included, P<0.05). 
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Fig.19. Mean Apidae abundance (overall number of insect 

visitors recorded in 48 hours of observation) Vs mean 

Megachilidae abundance (overall number of insect 

visitors recorded in 48 hours of observation). Populations 

are pooled. 



3.1c Results: Ononis masquillierii-Population characteristics  51   

3c. Results: Ononis masquillierii 

 

3.1c. Population characteristics 

 

Population size ranged from 151 to 3575 flowering racemes (average of the two rounds), and 

density ranged from 0.42 to 7.08 flowering racemes per square meter. Populations fell within the 

following categories: 3 large populations (>1000 flowering racemes), 3 medium populations (500-

1000 flowering racemes) and 2 small populations ( <500 flowering racemes) (Table 3). 

 

 

 

3.2c. Flowering characteristics and nectar standing crop 

 

The flowering period of Ononis masquillierii lasted about one month, from late May to early July.  

Flower life span was quite short (1.31±0.04 days, N=20). 

At the bud stage stigmas are not receptive, and they are often covered by the pollen released 

from the dehisced anthers; pollen viability tests performed on pollen at this stage showed a positive 

reaction. Stigmas become receptive when the flowers opened, and they remain in that state until 

they withered. Pollen is viable in all flower stages. 

Nectar standing crop was null in any flower observed. 
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3.3c. Breeding system and pollen limitation 

 

Recovery of the marked flowers was over 75%. 

Seed set after the hand-selfing and spontaneous selfing treatments produced very little seeds, 

and the two treatments didn’t differ in their response ( M-W U-tests; P>0.05), while manual cross-

pollination tests  resulted in the highest seed set (M-W U-tests; P<0.001, Fig.20). 
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Fig.20. Reproductive success of Ononis masquillierii in unpollinated, hand 

selfed and hand crossed flowers conducted at Fl site. Columns represent the 

mean number of viable seeds per ovule. Mean seed sets are displayed above the 

bars in the graph. 

 

 

No significant differences in the seed set were found between the bagged and unbagged hand-

crossed flowers at “Fl” (M-W U-tests; P>0.05), thus excluding any influences of the bags on seed 

set. 

Generally, one or (rarely) two seeds per flower were produced after hand-crossed pollination 

treatments in all populations. 
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Pollen limitation was always present, and its magnitude didn’t vary among the 8 populations 

(K-W test, P>0.05). The mean pollen limitation was 0.102 (range 0.074-0.130, N=8) with the 

minimum value found at “Fl” (the largest population), and the maximum at “Cb” (the smallest 

population) (Table 17).  

 

 

 

 

Table 17. Results of separated pairwise Mann-Whitney U-tests for seed-set in hand crossed and nonsupplemented 

flowers in 8 populations of Ononis masquillierii. Mean ± SE are given (backtransformed data). Populations are listed in 

order of size (number of flowering racemes). Signif. codes:  0 *** 0.001 ** 0.01 * 0.05, ns= not significant. 

 
 

 

Nevertheless, pollen limitation was negatively correlated with population size (r = -0.73, P=0.04; 

regression based on population means, Fig.21a), while neither population density nor insect 

abundance had any influence on pollen limitation (P>0.05). The negative effect of population size 

on pollen limitation reflected the positive relationship between population size and the seed set of 

unmanipulated flowers, where large populations yielded greater amounts of seeds than small ones, 

(r = 0.81, P=0.01, regressions based on population means, Fig.21b), while again population density 

had a null effect (P>0.05). No patterns emerged when considering the seed set relative to hand 

crossed flowers ( P>0.05). 

    

Population Hand crossed Free pollinated M-W 

    

Fl 0.10±0.01 0.026±0.008 ** 

Cc 0.109±0.006 0.010±0.006 *** 

Er 0.122±0.008 0.015±0.007 *** 

Mp 0.119±0.007 0.006±0.005 *** 

Mc 0.11±0.01 0.010±0.006 *** 

Ab 0.113±0.006 0.016±0.007 *** 

Cr 0.103±0.007 0.005±0.005 *** 

Cb 0.132±0.007 0.002±0.003 *** 
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       a       b   

Fig.21. Seed set as a function of population size (mean number of flowering racemes) and density (mean 

number of flowering racemes/m²). Regressions were calculated for (a) the difference in mean seed set 

between hand-crossed and unpollinated flowers (i.e. “pollen limitation index”), (b) the mean seed set in 

unpollinated flowers (Free pollinated seed set). Data refer to the 8 Ononis masquillierii populations and are 

pooled over two rounds. 
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3.4c. Flower insects 

 

A total of 112 insects were caught in 16 hours of random collection across the eight populations. As 

the study spanned the full flowering period of the species, I am quite confident to have nearly 

covered the full spectrum of insect visitors. All insects belonged to Hymenoptera, with 8 genera 

represented overall (Table 18). On 112 insects no males were caught.  

 

 

 

  Population  

Taxon Functional group Ab Cc Cb Cr Er Fl Mc Mp Total 

           

Hymenoptera           

Andrenidae           

Andrena spp. M-L - 3 - 1 1 6 - 1 12 

Apidae           

Anthophora sp. L - - - - - 1 1 - 2 

Bombus spp. L - 7 - - 4 2 - - 13 

Eucera spp. M-L - 3 2 - 4 9 - 6 24 

Halictidae           

Lasioglossum spp. S 4 5 1 - 2 4 4 6 26 

Megachilidae           

Anthidium sensu lato spp. S-M 1 - - - 4 - - 1 6 

Osmia sensu lato spp. S-M 3 1 1 5 5 2 - 5 22 

Megachile spp. S-M - - 1 1 2 - 2 1 7 

 

Table 18. List of insect visitors recorded in 8 populations of Ononis masquillierii in 2006. For each population the 

number of insect caught during a total of 2 h of random collection (over 2 rounds) is indicated. Insect functional groups 

are given (see text for details). 

 

 

 

Three most abundant genera were observed, with a similar relative frequency of approximately 20% 

(Lasioglossum spp, Osmia spp, Eucera spp), while Anthophora spp. accounted for <2%, and could 

be considered an occasional visitor (pooled populations). Most of the genera were absent in some 
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populations as a consequence of the low insect abundance. For instance, Anthophora spp was only 

recorded in two populations (“Fl” and “Mc”), while Anthidium spp and Bombus spp in three 

populations (“Ab”, “Er”, “Mp” and “Cc”, “Er”, “Fl” respectively).  

By grouping insects onto functionally similar taxonomic groups, according to both taxon 

(genus) and size (expressed by the body mass) simultaneously, I obtained the following guilds (in 

order of size, Table 18):  

 

� small bees (including Lasioglossum spp., “S”); 

� small-medium bees (including Megachile spp., Osmia spp., Anthidium spp., “S-M”); 

� medium-large bees (including Andrena spp. and Eucera spp., “M-L”); 

� large bees (including Anthophora sp. and Bombus spp., “L”).  

 

All groups were significant different from each other in terms of body mass (M-W U-tests; 

P<0.001) while genera belonging to the same group were statistically equivalent (M-W U-tests; 

P>0.05). Overall, by pooling all the 8 populations, the four functional groups were nearly equally 

distributed, except large bees that only accounted for 13,4% of total insects; small bees were 

represented only by genus Lasioglossum but accounted for 23,2% of total insects. No functional 

group was the most abundant in all populations. For example, medium large bees were overall the 

most frequent group, but at population level they were the first ranked group only in three 

populations (“Cb”, “Fl”, “Mp”). Conversely, the large bees group was the less frequent in all 

populations, but at Cc it was first ranked accounting for 37% of all insects. 

The absence of a clear supremacy of the same guild across all populations reflected the great 

variation in guild composition across populations. In fact only three populations had all the four 

insect groups represented (“Cc”, “Er” and “Fl”), while two populations had only two functional 

groups represented (“Ab” and “Cr”). This pointed out a lack of correspondence between the 

patterns of insect guild abundance in each population and the overall distribution. 

Insect abundance was significantly and positively correlated with the logarithm of population 

size (r = 0.81, P=0.01, Fig.22) but not to population density (P>0.05). 
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Fig.22. Mean insect abundance (number of Ononis 

masquillierii insect visitors per hour, from random walks 

collection) Vs mean population size (number of flowering 

racemes, Log-transformed data).  

 

 

 

3.5c. Pollinator effectiveness and importance 

 

From observations on pollinator behavior, it resulted that all insects caught touched the reproductive 

column, thus effectively contributing to pollen transfer. 

Summarized for all populations, functional groups differed in the amount of Ononis 

masquillierii pollen carried per body area (K-W test; P=0.02), even if only large bees statistically 

differed from the other guilds, carrying the smallest amount of pollen per area (M-W U-tests; 

P<0.05, Table 19).  
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Functional group N Median Q1 Q3 

     

S 26 232.0 a,b,c 44.8 626.8 

S-M 35 121.0 a,b,c 27.5 444.0 

M-L 36 96.0 a,b,c 33.3 283.0 

L 15 25.0 d 16.0 39.0 

 

Table 19. Median number of Ononis masquillierii pollen grains (per 15ømm sample) adhering to bodies of insect 

captured on flight (head + thorax + abdomen), after having visited an Ononis masquillierii flower (pooled populations). 

Insects are grouped by functional groups (S= small bees; S-M= small-medium bees; M-L= medium large bees; L= large 

bees). Sample size, 1st and 3rd quartile are given (N, Q1, Q3 respectively). Values significantly different  (P<0.05) are 

indicated by different superscript letters (a=S, b=S-M, c=M-L, d=L).  

 

 

 

A significant inverse correlation between pollen density and insect body mass was found, with 

small bees that carried on average eight times more pollen per area than the largest bees (r = -0.98, 

P=0.02, regression based on population means, Fig.23). 

Furthermore, differences in flower handling time by the four functional groups were detected, 

with small bees that spent significantly more time per flower than any other guild (M-W U-tests; 

P<0.001, Fig.24). 
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Fig.23. Relationship between mean number of Ononis 

masquillierii pollen grains carried on insect body (head + 

thorax + abdomen, overall: 15ømm sample) and mean 

weight  (gr) of insect visitors grouped by functional 

group. 
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Fig.24. Boxplot of flower handling time (sec) by the 

different functional groups recorded on Ononis 

masquillierii flowers during 32 hours of observation 

across 8 populations in 2006 (S= small bees; S-M= small-

medium bees; M-L= medium large bees; L= large bees). 

Medians are indicated by the central lines, the lower and 

upper edges of the box are the 1st and 3rd quartiles 

respectively. The whiskers extend to a maximum of 1.5 

times the inter-quartile range, the points outside the 

whiskers are potential outliers. 

 

 

 

In addition, insect size affected the pollen placement on the three main body parts (head, thorax, 

abdomen). No significant pattern of pollen density on head among functional groups was found, 

while, when considering the pollen adhered to thorax and abdomen, it resulted that large bees 

tended to transport significantly less pollen than small and medium bees (M-W U-tests; P<0.05, 

Table 20). That tendency could be the consequence of a mechanical barrier relative to flower size: 
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observations revealed that small and medium bees could enter the flower with all their body, and 

collected pollen by moving freely inside it; conversely large bees were mainly forced to use the 

head for contacting the reproductive column. This is confirmed by the high proportion of Ononis 

pollen grains carried on head by large bees (41%), compared with the remaining functional groups 

(Fig.25). 

 

 

 

      

Body part Functional group N Median Q1 Q3 

      

S 26 5.5 a,c,d 1.0 28.0 

S-M 35 23.0 b,d 7.0 92.0 

M-L 36 6.5 a,c,d 3.0 26.3 
Head 

L 15 11.0 a,b,c,d 2.5 21.5 

S 26 50.5 a.b,c 5.75 178.0 

S-M 35 16.0 a,b,c 5.0 79.0 

M-L 36 21.0 a,b,c 3.8 63.3 
Thorax 

L 15 5.0 d 1.5 8.5 

S 26 40.0 a,b,c 5.3 343.8 

S-M 35 54.0 a,b,c 9.5 178.0 

M-L 36 46.5 a,b,c 13.0 119.5 
Abdomen 

L 15 6.0 d 2.0 13.0 

 

Table 20. Median number of Ononis masquillierii pollen grains (per 15ømm sample) carried on 

different body parts of insects visiting the flowers (pooled populations). Insects are grouped by 

functional groups (S= small bees; S-M= small-medium bees; M-L= medium large bees; L= large bees). 

Sample size, 1st and 3rd quartile are given (N, Q1, Q3 respectively). Values significantly different  

(P<0.05) are indicated by different superscript letters (a=S, b=S-M, c=M-L, d=L). 
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Fig.25. Ononis masquillierii pollen distribution on the three main body 

parts of insects visiting the plant (pooled populations). Percentage are 

relative to means. Insects are grouped by functional groups (S= small 

bees; S-M= small-medium bees; M-L= medium large bees; L= large 

bees). 

 

 

 

In order to have an estimate of the contribution of each functional group to the pollination of 

Ononis masquillierii, an index of pollinator importance was calculated as the product of the relative 

frequency of each functional group and its mean pollen load (head + thorax + abdomen). 

The same pattern between pollen density and insect body mass was found, as the importance of 

each functional group was inversely related to its body size (r = -0.98, P=0.02 regression based on 

population means, all populations pooled, Fig.26).  
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Fig.26. Importance index (mean pollen grains per 15mmø 

sample (head+thorax+abdomen) x mean relative 

frequency) Vs mean insect body size relative to insects 

visiting Ononis masquillierii flowers across 8 populations 

(pooled populations). Insects are grouped by functional 

groups. 

 

 

 

The most important pollinators were small bees (Table 21), with an importance value more than 10 

times higher than the less important functional group, represented by the largest insects. This was 

mainly due to the great amounts of pollen carried on the body of small bees, rather than to their 

relative frequency (Table 21). By contrast, despite their high relative frequency, medium-large bees 

ranked only third, as they carried less pollen than small bees. 

No insect guild was the most important in all populations, although no statistical elaboration could 

be performed due to the low number of insects per population. 
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Functional group 
Mean pollen grains per 15mmø 

sample 
Mean relative frequency Importance index 

    

S 409.62 0.232 95.0 

S-M 253.97 0.313 79.5 

M-L 171.11 0.321 54.9 

L 52.73 0.134 7.1 

 

Table 21. Importance index (mean pollen grains per 15mmø sample (head+thorax+abdomen) x mean relative 

frequency) calculated for each functional group visiting Ononis masquillierii flowers (S= small bees; S-M= small-

medium bees; M-L= medium large bees; L= large bees). 

 

 

 

Data on scopal pollen composition showed very high values of fidelity of all insect guilds, with 

Ononis pollen percentage always over 80% (all populations pooled, Table 22). Despite these high 

values of fidelity, a great variability among pollinator guild was found (K-W test; P<0.001, Table 

22). Small bees carried the highest percentage of Ononis pollen (median 100%), while small-

medium bees, even if representing the second more important functional group, showed the lowest 

value of fidelity (median 81%). If taken separately, in 6 of 8 populations the highest values of 

fidelity came from small bees, even if the very low insect abundance per population prevented the 

data to be statistically analysed. 
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Functional group N Median (mean) fidelity Q1 Q3 

     

S 26 1.00 (0.89) a 0.88 1.00 

S-M 35 0.81 (0.69) b 0.53 0.91 

M-L 36 0.98 (0.84) c,d 0.80 0.99 

L 15 0.98 (0.91) c,d 0.96 0.99 

 

Table 22. Median (mean) fidelity (proportion of Ononis masquillierii pollen on scopa) of the four functional groups 

visiting Ononis masquillierii flowers (S= small bees; S-M= small-medium bees; M-L= medium large bees; L= large 

bees). Sample size, 1st and 3rd quartile are given (N, Q1, Q3 respectively). Values significantly different  (P<0.05) are 

indicated by different superscript letters (a=S, b=S-M, c=M-L, d=L). 
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4a. Discussion: Echium plantagineum 

 

The main goal of this study was to test whether population size represented an important factor for 

Echium plantagineum reproductive success. My data suggest to some extent a different behavior of 

large Vs small populations. 

In fact, in the small studied populations, the seed set in open, free pollinated flowers was almost  

40% lower than in large ones. This agrees with other studies, where reproductive success was found 

to be affected by plant population size (Ågren 1996, Hendrix & Kyhl 2000, Kéry et al. 2000, 

Oostermeijer et al. 2000, Mavraganis & Eckert 2001, Tomimatsu & Ohara 2002, Brys et al. 2004, 

Kolb 2005, Ward & Johnson 2005, Hensen & Wesche 2006). Surprisingly, the same tendency was 

found when considering the hand-crossed flowers, being small populations on average 20% less 

productive than large populations. By contrast, no among–population differences were detected in 

both “free” and “cross” data. 

In addition, for six of seven populations, pollen addition experiments were successful in showing 

some level of pollen limitation: the average number of seeds per ovule was in fact significantly 

higher when pollen supplementation occurred than in natural conditions. Nevertheless, small and 

large populations experienced a similar magnitude of pollen limitation. 

Generally, three factors can influence the female reproductive success of a plant species: i) the 

provision of suitable pollen for fertilization of ovules, ii) the amount of resources required for seed 

production and development i.e. light, nutrients and water, and iii) the presence of plant enemies 

(herbivores, pathogens). 

Between-population size differences in plant fecundity, calculated as seed set in free pollination 

treatment, revealed that somehow large populations were slightly more productive than small ones. 

This difference can be attributed to one or more of the previous listed factors. Even if not directly 

measured, resources availability seems to be important, as seed output in supplemented flowers 

(cross seed set) was different between population size classes, being higher for large populations. 

On the contrary, when considering the pollen limitation index, no pattern emerges, as small and 

large populations set an equivalent number of seeds. Thus, from productivity data, pollination 

services didn’t vary in their magnitude between population size categories. This is  confirmed by 
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data relative to insect visits: large and small populations received in fact the same amount of 

insects, and significant differences only occurred at a population level. Again, the foraging behavior 

of pollinators (in terms of number of flowers visited within a plant) was not influenced by 

population size. 

It is hard to discuss the direct causes of the similar attractiveness to insects of large and small 

populations, but I can hypothize that the availability of insect nesting sites more than plant 

population size may have played a major role.  

The question of whether resources rather than pollination may represent the principal limiting 

factor to reproduction success have been already addressed (Stephenson 1981, Lee 1988, 

Zimmerman & Pyke 1988, Mustajärvi et al. 2001). Nevertheless, the present data need to be treated 

with some caution, as this study made no attempt to modify the amount of resources, thus not 

teasing apart the two effects. The strict dicothomy between pollen and resource limitation has been 

criticized in the past on the ground of both theoretical and experimental manipulation ground, and 

seed output could be the result of an equilibrium between resource and pollination levels (Galen et 

al. 1985, Haig & Westoby 1988, Campbell & Halama 1993).  

The picture is further complicated by the impact of grazing on Echium plantagineum fitness.  

Results indicate that in some populations the grazing pressure was so heavy  that half the marked 

seeds were lost, presumably eaten by sheep and goats. Furthermore, small Echium populations were 

more exposed to this type of pastoral practice. 

The Mediterranean region has a long history of human-induced perturbations, with fire and grazing 

playing a major role (reviewed in Petanidou & Lamborn 2005). The effect of grazing on plant-

pollinator interactions mainly depends on its intensity: if moderate and not persistent, it can support 

a richer bee (through an increase of nesting sites) and plant (through a balance between open ground 

and woody habitat fragments) communities; if intensive or uncontrolled, it can lead to the 

destruction of bee nesting sites and soil erosion. 

In general, grazing practice in the studied sites in Lesvos can be considered threatening for Echium 

populations, as in most cases plants had many damaged cymes, and sometimes after grazing the soil 

was left completely bare. To what extent grazing pressure may have contributed to determine the 

size of small Echium populations remains unknown, but differences in seed set with large 

populations (ungrazed or less grazed) suggest a direct effect in causing a potential shortage of seed 
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production for small ones, probably affecting the seedling recruitment in a successive stage. The 

potential reduction in both seed production and soil seedbank level by grazing is confirmed by 

studies conducted where Echium plantagineum is considered a weedy alien species (Smyth et al. 

1997). 

Thus, the combined effect of resource limitation and grazing pressure may have significantly 

shaped the size of Echium populations. 

When all populations are pooled, further data emerge. As a group in fact, the seven populations 

of Echium plantagineum showed i) a negative relationship between grazing pressure and patch 

density, and ii) a decline in seed set (both for cross and free treatments) of surviving plants 

occurring in overgrazing regimes. 

On the first point, a possible explanation may lay on a biochemical base. Echium plantagineum 

contains pyrrolizidine alkaloids, toxic to livestock (Culvenor 1956). Even if sheep can graze it for a 

time, prolonged grazing can provoke serious liver damages. Coupled with the fact that sheep are 

selecting in their feeding preferences, preferring the more palatable plants (Grant & Armstrong 

1993), in the studied populations they presumably tended to avoid Echium plantagineum as a first 

foraging choice, and plants were likely grazed only when the feeding sources provided by the other 

co-occurring plant species were depleted (pers. obs). It derives that denser Echium patches were less 

grazed than sparser ones, at the expense of co-occurring plant species. 

The second point highlights the consequences that intensive grazing had in ungrazed (or partially 

grazed) plants in terms of seed development. Even if grazing can also have beneficial effects on 

plants, as defecation and urination can increase the soil’s nutrient properties, and competition 

among large-seeded annual grasses is reduced (Grigulis et al. 2001), overgrazing is likely to stress 

the detrimental effects. My results suggest that the effects of grazing on productivity were not 

limited exclusively on a loss of potential seeds (via flower and/or fruit eating), but also on a 

whatever it might be damage to the ungrazed flowers. Two (non-mutually exclusive) hypotheses 

can be formulated. The first invokes a possible mechanical damage to Echium plants (at the 

reproductive and/or vegetative structures), and a subsequent loss of vigour. Intensive biting and 

shearing may cause stem breakage and bruises leaf tissues, while trampling can alter the soil 

permeability of both air and volume, thus limiting rooting volume (Wells & Dougherty 1997). As 

plant systems are dominated by trade-offs (Weih 2003), lowered overall resources could imply a re-
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allocation of resources at the expense of the male and/or female reproductive fitness, that is pollen 

and ovules respectively.  

A second explanation can concern the availability of compatible mates in the population. As 

Echium plantagineum resulted fully self-incompatible, and as grazing reduced the number (and/or 

the vigour) of the flowering conspecifics, legitimate pollen transfer wouldn’t be favoured in 

overgrazing conditions. A minimum amount of pollen must be available for the fertilization process 

to occurr (Cruden 2000), therefore a fraction of the egg cells could not have been fertilized. 

Nevertheless this last hypothesis would not account for the decline in productivity in handcrossed 

flowers. 

Denser patches experienced lower level of grazing than sparser ones, but they also resulted 

more attractive to insects. The positive relationship between flowering plant density and insect 

visitation rate has been already documented by other studies (Kunin 1993, 1997), even if not always 

(Bosch & Waser 1999, 2001, Mustajärvi et al. 2001, Kirchner et al. 2005). The present study shows 

that denser patches were associated with i) a higher number of visits per flower (with density 

calculated as the number of flowering individuals per area), and ii) a smaller number of flowers 

visited within a plant per insect (with density calculated as the spacing between neighbouring 

individuals). Thus, on a theoretical base, insects visiting denser patches would provide better 

services both in terms of the quantity (number of pollen grains deposited on stigmas) and the quality 

(type of pollen grains deposited on stigmas) components of pollination than insects visiting sparser 

patches. Selfing by geitonogamous pollen may be determined by the behavior of pollinators, and 

can be enhanced if pollinators visit more flowers within a plant (Utelli & Roy 2000); in self-

incompatible species (as Echium plantagineum), geitonogamy would imply a waste of pollen and a 

reduction of the free stigma surface available for the legitimate pollen to germinate.  

In conclusion, even though productivity (cross-free seed set) was not associated with patch 

density, there may be an advantage to organizing Echium plantagineum individuals into dense 

rather than sparse patches because of i) a lower intensity of grazing, and ii) a higher ability to 

attracting the pollen vectors.  

Finally, a puzzling aspect of this study concerns pollen limitation. My findings clearly show that 

almost all populations occurred in highly pollen limited contexts, even if the extent of pollen 

limitation didn’t vary with Echium population size. More than 75% of the initial ovules after the 
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pollen hand supplementation developed into seeds, while in open natural condition the percentage 

dropped to 38%. A similar occurrence of pollen limitation was found in another species of the 

island (Ballota acetabulosa). However, it seems hard to detect which factor could have driven this 

pattern. Generally, common species are expected to enjoy higher visitation rate than rare species, 

thus are expected to be less prone to pollen limitation. Echium plantagineum is a common (even if 

not dominant) species in the Mediterranean, which represents its native range and is considered a 

hot spot in terms of plant and bee diversity (Proctor et al. 1996). From my observations, the large, 

nectariferous flowers attracted a large amout of insects (mainly bees), covering a wide spectrum of 

families and genera (pers. obs.); thus pollen limitation would not be expected. Moreover, a previous 

study conducted in Spain showed evidence of a wind-borne transport of Echium pollen, that might 

be important in the among-population pollen exchange (Rodríguez et al. 2005). This could reduce 

reliance on pollinators, and could account for the similar pollen limitation values found between 

large and small populations, but again this would contrast with data on pollen limitation. In 

addition, when it co-flowered with other plant species, Echium plantagineum resulted a good 

competitor, but my study didn’t gather data on insect visitation rate to other flowering species in the 

absence of Echium plants. It seems unlikely that the insect visitation rate to Echium flowers was 

lower than the one to other flowering species, even if in the island spring represents the “boom” 

period in terms of number of blooming species, and competition for pollinators can be tough 

(Petanidou et al. 1995b).   

Two main hypotheses can be formulated to explain the existence of pollen limitation. 

First, plant species evolving in a predictable pollination system may be particularly prone to pollen 

limitation if some sort of habitat perturbation occurs. The most intuitive effect of recent habitat 

degradation is that a continuous habitat can be broken up into small fragments, often by some 

processes derived from anthropogenic sources. Because a mutualistic interaction is involved, it is 

sufficient that only one component (either plant or pollinators) is plagued by habitat fragmentation 

for the weakening or disruption of a particular plant-pollinator interaction, hence resulting in pollen 

limitation. Generally, the surroundings of the sites where Echium populations occurred formed a 

complex and artificial matrix, with olive groves and disturbed open areas often interrupted by roads 

and villages. In addition, aerial insecticide spraying in olive groves represented a constant threat to 

bee communities. Even if Echium plantagineum is a common species in Lesvos, the degree of 
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habitat fragmentation (both from Echium plants and its pollinators perspective) where it occurrs 

remains unknown, and although tempting (without a complete knowledge of the bee nesting 

requirements), I cannot exclude the possibility of a pollinator shortage or decline in the area, as a 

consequence of the low habitat quality. At the level of resolution of my study, the consequences of 

this loss would have affected Echium populations regardless of their size, as bee essential resources 

were probably Echium-indipendent.  

Second, pollen limitation may be the result of an adaptive equilibrium in response to stochastic 

processes that govern pollination systems (Burd 1994, 1995). The unpredictability of pollen receipt 

in such systems may favour an oversupply of ovules per flower, in order to achieve the maximum 

seed set in optimal pollination situations, thus it would result adaptive for the species to be 

chronically pollen limited. The Mediterranean is dominated by tremendous fluctuations in insect 

abundance and composition between years (Herrera 1988, Petanidou & Ellis 1993, Petanidou & 

Potts 2006), and variations in the pollination environment coming from human-induced 

perturbations may exacerbate these fluctuations, putting under risk the pollen transfer also for bee-

richer areas and for common plant species.  

Therefore, further work (at both spatial and temporal scale) is necessary to untangle the relative role 

of factors ruling pollen limitation.  
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4b. Discussion: Ballota acetabulosa 

 

There are two major findings of this study: i) natural populations of Ballota acetabulosa differing in  

size equally responded in terms of reproductive success, insect visitation rate, number of flowers 

visited within a plant per insect and insect diversity; ii) most of populations were strongly subject to 

pollen limitation, irrespective of population size. 

There is a large body of evidence that large population size is positively related to pollination 

(Jennersten 1988, Aizen & Feinsinger 1994a, Waites & Ågren 2004) or plant fecundity (Ågren 

1996, Hendrix & Kyhl 2000, Kéry et al. 2000, Oostermeijer et al. 2000, Mavraganis & Eckert 2001, 

Tomimatsu & Ohara 2002, Brys et al. 2004, Kolb 2005, Ward & Johnson 2005, Hensen & Wesche 

2006). Nevertheless, some other studies indicated that the previous associations are not always valid 

(Kunin 1997, Molano-Flores & Hendrix 1999, Leimu & Syrjänen 2002); therefore it always results 

dangerous to draw conclusions from single studies, as pollination and plant reproductive ecology 

are governed by complex interactions. 

From the pollination facet, pollinators can approach large populations at a higher rate than small 

ones because of their larger floral display (Bell 1985, Valido et al. 2002, Momose 2004). Moreover, 

in natural plant populations population size and density are often correlated, and large population 

size can lead to higher rates of outcrossing (Van Treuren et al. 1993). Therefore, insufficient 

quantity and quality of pollen are commonly considered the most likely explanantions to reduced 

seed set in small populations (Byers 1995), especially in case of  self-incompatible, animal-

pollinated species. In this study, the size of Ballota populations had no impact on seed set 

(difference between hand crossed and open pollinated treatments, pollen limitation index), 

indicating that somehow pollinator services were not prevailing in large populations. Data 

concerning insect visits confirmed this assessment, as no differences in insect visitation rate 

between large and small populations were found. Again, with regard to the quality component of 

pollination, the outcome was that the number of flowers visited by each pollinator within a plant 

didn’t respond to population size, suggesting that the likelihood of performing geitonogamy was the 

same in large and small populations. 
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Therefore, the lack of any differences in seed set between large and small populations can be 

interpreted in the light of a similar pollen service, as the two patterns go in tandem. 

Sometimes, for the plant reproductive output the resources available for reproduction result 

more important than the pollination services (Stephenson 1981, Lee 1988, Zimmerman & Pyke 

1988, Mustajärvi et al. 2001); nevertheless, in Ballota acetabulosa, seed set after pollen 

supplementation was not different between population size groups, suggesting that resources were 

equally distributed between population size categories. 

In addition to a variation in the total amount of visits, some studies have investigated the role of 

plant population size in determining the composition of the pollinator fauna (Sih & Baltus 1987, 

Sowig 1989, Levin 2000), while others investigated the role of habitat fragmentation (Aizen & 

Feinsinger 1994b, Tomimatsu & Ohara 2003). Aizen and collegue showed that, in an Argentine 

subtropical dry forest, small fragmented habitat units were poorer in native species than continuous 

fragments, and that some processes of bee guild replacing with non-native bees (Apis mellifera) 

occurred. Again, insect shifts between large and small populations were recorded in a deciduous 

forest in Japan by Tomimatsu and collegue.  

Ballota acetabulosa was mainly pollinated by bees and, even if all insects contacted the flower 

reproductive column, most of them were uncommon (but widespread across the island) and 

occurred at a low abundance. This suggests that the web of interactions between Ballota 

acetabulosa and its pollinators was composed by a core of strong interactions, and a network of 

weak interactions. Both at genus and functional group level, the Shannon index didn’t differ with 

population size, whereas great differences in insect assemblages among populations existed 

(whether honyebees were considered or not). Therefore, as it happened with data on visitation rate 

and geitonogamy, population size didn’t affect the composition and richness of pollinators, as large 

Ballota populations didn’t support a more diverse entomophilous fauna than small ones.  

Therefore, the overall results indicate that small populations of Ballota acetabulosa were 

unlikely to be at a reproductive disadvantage, and I feel that some considerations may be relevant in 

explaining this homogeneity of response. 

First, I expect population-related size and density effects on pollination and reproductive success to 

have a minor influence on common species adapted to grow on different habitats. This is the case of 

Ballota acetabulosa, that can be considered a common species in Lesvos. The eight studied 
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populations fell within a wide range of habitat types, such as open sunny disturbed lands, sparse oak 

forests or olive groves, often in the proximity of roads and towns. Although large and small 

populations constituted two clear and distinct categories, I can’t exclude that, at a higher scale, 

plants of Ballota acetabulosa were arranged in more continuous fragments, and that population 

connectivity was higher than expected. In this case, whether reproduction and pollination in Ballota 

populations showed a significant relationship with size could have depended on the presence of 

other neighbouring populations, and on whether one or few small populations received great 

amounts of suitable pollen. 

Furthermore, the ecological features characterizing plant-pollinator interactions during the 

flowering period of the species may provide other insights into the size-related effects on 

pollination and reproduction of Ballota acetabulosa. In an exhaustive 4-years long study carried on 

the greek phrygana, Petanidou and colleagues (Petanidou & Ellis 1993, Petanidou & Vokou 1993, 

Petanidou et al. 1995b) examined the temporal patterns of resource selection in this particular plant-

pollinator system (Fig.27). It resulted that flowering plant species were very sensitive to the summer 

climate constraints, and that only few of them managed to overcome the prolonged summer 

drought, being shrubs the dominant life form. The main flowering period extended from mid-

February through May, thus most of the plant species bloomed early in the season. By contrast, 

insects resulted less affected by summer constraints, as a shift towards summer in the temporal 

distribution of insect species occurred. Therefore, the overlapped temporal patterns suggested a 

possible competition among flowering species for insects during the main flowering period, and 

viceversa (competition among insects for floral rewards) during late spring-summer.   
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Fig.27. Temporal distribution of the daily number of flowering plant 

species (DNP) and insect species (DNI) in a Greek phryganic ecosystem. 

From: Petanidou et al. 1995b. 

 

 

 

In my year of study, Ballota acetabulosa was in anthesis from early June to early July, immediately 

after the main flowering period of the plant community, when flowering plants are scarce (then 

competition among plants is low, highlightened by the high values of Mf guild fidelity for Ballota 

pollen) and insects comparatively abundant. Moreover, like all late-flowering Labiatae, the flowers 

of Ballota offer nectar as the main reward (Petanidou & Vokou 1993) and, in conjunction with this, 

they provide the main source of water for bees. Again, even if Megachilidae (females) represented 

the most important guild (strongly favoured by their high summer foraging activity levels), the wide 

spectrum of pollinators indicates that Ballota acetabulosa is a generalist species, thus should be less 

exposed to problems with reduced visitation rates in small populations (Waser et al. 1996).  

For these reasons, Ballota acetabulosa would represent a key species for bees during summer, and 

pollinators would visit it despite of its population size, with the result of a similar performance of 

large and small populations.  
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By contrast, the differences in both visitation rate (with honey bees omitted) and Shannon index 

(both for genera and functional groups) among populations suggest that random or unknown 

environmental events might have interacted with bee communities in complex ways and at a lower 

scale. When it has been possible to perform the multiple regression analyses at patch level, the 

variables used (patch size, density and plant size) had a general low explainatory power, even if in 

one case (when honey bees were omitted) higher insect visitation rate was positively associated 

with plant size (consequently, negatively with plant density), as previously found in other studies 

(Schemske 1980, Klinkhamer et al. 1989). However, it results tempting to unravel these 

interactions, unless investigations on bee habitat preferences are done. 

Some additional data coming from honey bee abundance suggest a cautionary note. Generally, 

honey bees were relevant  to pollen transfer in Ballota acetabulosa especially for their higher 

abundance, as they accounted for 37% of total visits. Despite this high but dishomogeneous  

abundance (likely to be attributed to the occurrence and nearness of apiaries), whether including or 

not honey bees in the analyses led to similar patterns of responses of the considered variables. 

Nevertheless, in this study, an increase in honey bees meant a decrease in the females of 

megachilids, that represented the most important functional group in the Ballota insect spectrum. 

Honey bees are assumed to be superior competitors than wild solitary bees especially beacuse of 

their high exploitation of floral rewards for the maintenance of large colonies, and because of the 

complex dance-language used for communicating to other individuals the position of flowering 

patches representing high-quality food resources (Visscher & Seeley 1982). There is evidence of a 

mutual avoidance between honey bees and wild bees, suggesting a competition for flower resources 

(Roubik 1983), but the density of honey bees colonies is not always associated with a decrease in 

wild bee species richness or abundance (Steffan-Dewenter & Tscharntke 2000). It remains unclear 

if the significant correlation between honey bee and megachilid abundance found in this study is 

biologically meaningful; if so however, the presence of beehives near the populations could have 

distorted all the conclusions concerning Ballota population size effects  through an interspecific 

inhibitory effect. 

The answer to the question of if Ballota acetabulosa populations of different sizes differently 

responded in terms of reproduction and pollination services is no. Yet, like in Echium 

plantagineum, this study has further shown that most of the populations strongly suffered from 
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pollen limitation. This is unexpected, as like Echium plantagineum, Ballota acetabulosa is a 

common species in Lesvos, offered nectar as a bait for pollinators, and was visited by many insect 

genera (28, representing different insect families of different body sizes and sexes), suggesting it’s a 

generalist plant species. In addition, as already said, the competition with other co-flowering species 

was expected to be low. 

The two hypotheses mentioned for Echium plantagineum seem to cover the main possibilities for 

justifying the occurrence of pollen limitation in Ballota acetabulosa, but still, this study provides no 

empirical evidence for these. It appears problematic to define the distribution of Ballota populations 

as fragmented, without a complete mapping of the island; nonetheless, even in the presence of a 

high population connectivity, the habitat could be fragmented from the pollinators’ perspective, and 

a general pollinator decline could allow the existence of pollen limitation. In addition, for the self-

incompatible Ballota acetabulosa, another problem could be represented by a high degree of 

improper pollen transfer, as each plant had many flowers open at a time.  

Again, I suggest that detailed studies on pollen limitation over different seasons and on ecological 

attributes of bee community would be worthwhile to clarify these interactions. 
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4c. Discussion: Ononis masquillierii 

 

Ononis masquillierii resulted fully self-incompatible, and although capable of vegetative 

propagation, it appeared dependent on pollen vectors for its reproductive success. 

Reproduction appeared to be pollen limited in all the eight populations. The fact that hand-

outcrossings significantly increased seed set in all populations, without significant differences in %, 

suggests that pollen limitation is a natural condition of the species. Moreover, even if the magnitude 

of pollen limitation didn’t vary among populations, large populations were associated by a better 

seed output.  

Many other studies reported how plant reproductive success could be sensitive to plant 

population size and/or density (Kunin 1993, 1997, Ågren 1996, Bosch & Waser 1999, Hendrix & 

Kyhl 2000, Kéry et al. 2000, Oostermeijer et al. 2000, Mavraganis & Eckert 2001, Tomimatsu & 

Ohara 2002, Brys et al. 2004, Waites & Ågren 2004, Kirchner et al. 2005, Kolb 2005, Ward & 

Johnson 2005, Hensen & Wesche 2006). The two most tangible interpretations of the influence of 

population attributes on the degree of pollen limitation involve the quantity and the quality of 

pollinator service to the plants. About the quantity facet, large and dense populations are supposed 

to be more attractive to pollinators, showing increased number of visits per flower (Jennersten 1988, 

Kunin 1997) and higher reproductive success. In O. masquillierii, the strong correlation found 

between insect abundance and the logarithm of population size (r = 0.81, P=0.01 Fig. 22) 

corroborates this hypothesis. The finding of the negative correlation between pollen limitation index 

and population size clearly shows the importance of pollen services in determining the seed set; in 

addition, the positive correlation between plant fecundity (expressed as the seed set in open natural 

condition) and population size disappears when considering the seed set of experimentally hand-

crossed flowers, as we would expect if seed output was limited by pollinator activity levels.    

Moreover, the quality of pollinator services can play an additional and important role. Van Treuren 

and colleagues (1993) documented a positive relationship between outcrossing rate and plant 

density in four populations of the bumblebee-pollinated Salvia pratensis, that could underlie a 

different pollinator foraging behavior in response to different plant population densities. 
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One of the hypotheses was that higher levels of outcrossing found in denser populations were 

caused by a higher frequency of interplant flights; this could lead insects to visit more flower per 

plant in small or sparse populations, thus promoting geitonogamy (De Jong et al. 1993, Karron et al. 

1995). In this study I couldn’t demonstrate this, as it resulted impossible to distinguish separate 

plants because of the vegetative propagation of this species. Anyhow, population density was found 

to have little effects in terms of productivity, and this can be the consequence of i) the occurrence of 

clonal growth, that may have shaded the effects of density through the arrangement of genets into 

more or less clumped distributions (Charpentier 2002), ii) the type of experimental design, as this 

study made no attempt to modify population densities. Therfore, density experimental 

manipulations would be necessary to investigate the potential role of plant density in contributing to 

the Allee effect. 

In contrast to my expectations, even if pollen limitation tended to be negatively related to insect 

abundance, it only approached statistical significance. This can be mainly due to the exceptional 

low number of insect collected per census, that prevented the 30’-long catching sessions to be 

sufficient to obtain a more powerful correlation. Therefore, exceedingly large sampling efforts 

would be advisable in pollination systems characterized by low and unconstant pollination services 

(Larson & Barrett 1999, Baker et al. 2000). 

Finally, another interesting feature of O. masquillierii reproductive biology is represented by its 

widespread reduced female fecundity. Ononis masquillierii had an ovary containing on average six 

ovules, but generally one (rarely two) seed was produced, regardless of the pollination treatment, 

thus even in presence of great amounts of compatible pollen. In hand-crossed flowers in fact, only 

11% of the initial ovules developed into seeds, while the percentage dropped to 1.1% in open 

pollinated flowers. One of the factor responsible to this loss can be represented by a limitation in the 

available resources needed to develop all ovules, as the particular habitat where the species occurrs 

is particularly subject to soil dissolution, water runoff and drought.   

 

Even if population size represented an important extrinsic factor regulating the magnitude of 

pollen limitation (which affected small populations to a bigger extent than large ones), it remains 

that the pollination environment where the species occurred was characterized by a widespread 
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inadequate pollination. Thus, the problem of detecting the principal causes of the occurrence of 

pollen limitation can be solved by examining the intrinsic reproductive traits of the species.  

My findings demonstrate that Ononis masquillierii displays several characteristics of its 

reproductive biology that can account for the presence of pollen limitation. 

 

a. Plant specialization & competition 

Flower specialization may play an important role in determining the extent of pollen limitation, and 

pollinators may not equally contribute to the pollen transfer dynamics. 

The spectrum of insects visiting O. masquillierii was taxonomically and morphologically diverse. A 

similar number of genera has been documented for other legumes growing in the same area (Galloni 

et al., in press), and, at functional group level, insects ranged in size from very small bees 

(Lasioglossum spp.) to large ones (Bombus spp.). All insects recorded touched the reproductive 

structures. Not surprisingly, great differences in insect assemblage (both at genus and functional 

group level) were found among populations. Previous studies highlighted spatially variable plant-

pollinator associations (Herrera 1988, Fenster & Dudash 2000), mainly due to variations in plant 

community backgroud (Moeller 2005), availability of nesting sites (Cane 1991, Steffan-Dewenter & 

Tscharntke 1999, Michener 2000, Potts et al. 2005) and landcape fragmentation (Aizen & 

Feinsinger 1994b). In O. masquillierii, neither population size nor density resulted effective in 

explaining the shift in insect fauna composition across populations, but populations were located in 

slightly different landscape contexts, with populations in turn delimited by roads, surrounded by 

agricultural matrices or close to forest fragments. Variations in insect fauna at a small spatial scale 

have been already found (Herrera 1988, Moeller 2005), and heterogeneity of environmental factors 

between small spatial sectors can play a major role in shaping the structure of insect assemblages. 

For this reason, deeper investigations on the biotic and abiotic characteristics of the environment 

where the species occurs would be advisable.  

Despite this variation in insect guild abundance (and importance) across populations, it resulted 

that small bees were the most important pollinators for O. masquillierii, and that there was a clear 

pattern of variation of importance with insect size. Previous studies have documented the effects of 

forager body size on pollinator behavior and plant reproductive success (Tepedino et al. 1999, Stout 

2000), and mechanical constraints on pollen harvesting seemed to represent in O. masquillierii the 
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major cause of the negative relationship between insect importance and body size. Shall I have to 

consider the plant as specialized? O. masquillierii flowers show the typical “bee-pollinated 

syndrome”(Fægri & van der Pijl 1979), with small zigomorphic flowers, but at the same time they 

were promiscuously visited by different insect taxa. Recently, the concept that a plant could be 

successfully pollinated only by a narrow subset of pollen vectors has been criticized after field 

studies showed widespread plant-pollinator interactions of high generality (Waser et al. 1996). 

Anyhow, Fenster and colleagues (2004) proved that the majority of the generalist interactions 

obtained by organizing pollinators into species became instead specialized when pollinators were 

organized into functional groups. In this case, insect body size and taxonomic position seemed to 

represent the more adapt ecological features to discriminate the set of Ononis pollinators; therefore, 

small O. masquillierii flowers resulted specialized on small bees (represented only by Lasioglossum 

spp.). A correspondence between the pattern of pollen density Vs insect body size and pollinator 

importance Vs insect body size was found. This means that the insect relative frequency had less 

influence in determining the importance of the various functional groups in comparison with the 

amount of pollen carried on insect bodies, although data could suffer from the low insect abundance 

widespread across the populations. Thus, small bees resulted the most important pollinators 

especially because of their great pollen load, while their relative frequency was not particularly 

high. Because of their small size, they managed to enter the flowers with the entire body, and, by 

working flowers at a lower speed than the other guilds, they gathered more pollen and they 

contributed to a great extent to the pollen transfer. Their high fidelity to Ononis pollen strengthens 

their prominent role in the assurance of the pollen service. 

Zygomorphy is expected to be associated with specialized pollinators, and with a higher quality of 

the pollination mechanism (Kunin & Shmida 1997, Neal et al. 1998). This could in theory imply a 

smaller probability of facing pollen limitation for specialized flowers (but see Larson & Barrett 

2000, Knight et al. 2005a). Nevertheless, two factors can reverse this consideration.  

First, the ecological advantages of having a complex flower architecture can be counterbalanced by 

a lack of flower attractiveness. Without the proper rewards or advertising, flowers are likely to be 

avoided by pollinators, bringing benefits to other more attractive co-flowering species.  
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The overall number of Ononis visitors caught in 16 hours of random collection across the eight 

populations  represents a very low value if compared with insect abundance on other legumes 

growing in the same habitat (Hedysarum coronarium, pers.obs). 

Higher insect visitation rate has been reported for large-flowered Vs small-flowered species (Valido 

et al. 2002, Momose 2004), and for nectariferous Vs nectarless species (Motten 1986, Thomson 

1986, Klinkhamer & De Jong 1990), and higher seed output has been reported for nectariferous Vs 

nectarless orchids (Johnson & Bond 1997, Neiland & Wilcock 1998) and in general for 224 species 

of animal-pollinated flowering plants (Larson & Barrett 2000). O. masquillierii coexisted with other 

bee pollinated species well adapted to the selective substrate of the gullies, primarily other 

Leguminosae (Hedysarum coronarium, Dorycnium hirsutum, Trifolium spp.), or it was surrounded 

by arid-meadowed Labiatae (Ajuga genevensis and Stachys officinalis for example). These species 

attracted in general more insects than O. masquillierii (pers.obs), and even if O. masquillierii and its 

main co-flowering species shared a similar flower structure (in respect of size and shape), profound 

differences in nectar production were documented, O. masquillierii being completely nectarless, 

contrary to the majority of its neighbouring species. This could in theory translate in an interspecific 

facilitative interaction via shared pollinators (Oostermeijer et al.1998, Moeller 2004), as facilitation 

has been often documented when nectarless species are surrounded by rewarding species (“the 

magnet species effect”, Thomson 1978, Johnson et al. 2003). Nevertheless my observations contrast 

with this expectation, as the two more frequent insect taxa visiting the main co-flowering species 

(Apis sp. and Bombus ssp., pers.obs.) were either absent (Apis sp.) or accounted for only 12% of 

total insects (Bombus spp.) in the Ononis spectrum. In addition, during the observation sessions, 

some insects belonging to other taxa (Chalicodoma spp. and Xilocopa sp. for example) were noted 

to approach the flowers of Ononis masquillierii at first, even if they avoided any contact when they 

were closer to them, as optimal foraging models assume (Goulson 2000). It could be possible that 

some insect taxa were shared in the plant community, as it often happens when flowering times of 

different species overlap (Gross et al. 2000), but a dicothomy in terms of pollination agents between 

Ononis masquillierii and its co-flowering species seemed to exist, and the competition hypothesis 

appears more reasonable.  

The high level of fidelity of the different insect guilds visiting O. masquillierii seems to strengthen 

this hypothesis. Among these, the insects that were supposed to be the less adapt to Ononis flowers 



84  4c Discussion: Ononis masquillierii   

because of their large size (Anthophora sp. and Bombus spp.) resulted the second ranked 

pollinators, suggesting a selective preference for Ononis flowers as a pollen source. 

Again, as the only reward offered by Ononis flowers was pollen, no insect males were recorded 

across all the eight populations; to what extent this can have contributed to pollen limitation 

remains unknown, and sex-ratio investigations relative to the main insect taxa would be necessary. 

Second, plant species specialized on a narrow subset of pollinators may experience reproductive 

failure in unpredictable pollination systems. Pollinator abundance and composition may fluctuate 

tremendously across years and sites (Herrera 1988, Petanidou & Ellis 1993, Tepedino et al. 1999, 

Petanidou & Potts 2006), hence it can happen that the proper pollinator could not be always present. 

Therefore, the low number of suitable pollen vectors makes specialized plants less flexible to 

environmental stochasticity than generalist species (Bond 1994, Waser et al. 1996). 

Even if this study spanned only one year, the heterogeneity in insect composition and frequency 

among the eight populations of Ononis masquillierii suggests that this risk can be real. 

 

b. Breeding system & asexual propagation 

Data relative to the breeding system showed that the species was fully self-incompatible, leading to 

the conclusion that Ononis masquillierii was incapable of producing seeds in the absence of 

pollinators. Previous studies supported the hypothesis of a lower degree of pollen limitation in self-

compatible species compared with self-incompatible ones (Larson & Barrett 2000, Knight et al. 

2005a). The most quoted hypothesis to justify this pattern was provided by Burd (1994), who 

invoked the self pollen as an additional source of pollen received by stigmas in self-compatible 

species.  

My data indicate that all the eight populations of Ononis masquillierii were deeply subject to pollen 

limitation; if the same pattern occurred across years, the plant would be chronically pollen-limited. 

Plant species occurring in chronically pollen-limited systems may be subject to evolutionary 

pressures, and the evolution of self-fertilization can result as an adaptation for the assurance of 

reproduction (Motten 1986, Bond 1994). This is true despite pollen discounting and inbreeding 

depression may contrast the evolution towards autogamy, as in pollen-limited environments smaller 

amounts of self-pollen are needed to promote selfing (Porcher & Lande 2005). Therefore, if pollen 

limitation in Ononis masquillierii were a natural condition of the species, I would expect a long-
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term modification of its breeding system, with the breakdown of self-incompatibility (Vallejo-

Marín & Uyenoyama 2004).  

Furthermore, Ononis masquillierii is capable of vegetative propagation through rhizomes. 

Different ecological advantages are associated with clonal reproduction, and trade-offs in allocation 

to asexual Vs sexual reproduction can help the plant to face changing and heterogeneous 

environments (Ronsheim & Bever 2000). The most intuitive advantage of asexual reproductive 

mode is the (partial) independence of the plant from pollination mechanisms, particularly important 

in case of self-incompatible entomophilous species. In addition, clonal growth may contribute to the 

floral display through the increase of the flowering shoots, thus enhancing pollinator attractiveness. 

Despite these advantages, vegetative propagation implies negative aspects as well. For example, 

clonal growth can increase the rate of geitonogamy, hence reducing the plant fitness because of a 

lack of compatible pollen (Charpentier 2002). Hence, even if it’s true that vegetative propagation 

allows the species to persist even in scarce pollinator environments, it can also lower the quality of 

the few pollinator services. In my study, it’s possible that the higher values of pollen limitation 

found in small populations were the consequences of higher levels of geitonogamy, as small 

populations were likely represented by few genets (Eckert &  Barrett 1993). 

To summarize, Ononis masquillierii’s reproductive biology presented several characteristics 

that made it a poor competitor. The small, nectarless, short-living flowers attracted very few insects 

than the co-flowering species, and among them, small bees seemed to matter most, thus 

representing the main pollen vectors. Although pollen limitation may not always mean an 

immediate conservation threat because of the stochastic nature of plant-pollinator systems (Burd 

1994, 1995), the reduced reproductive success associated with the size of Ononis masquillierii 

populations may lead to dangerous demographic consequences for small populations. Rare, self-

incompatible unattractive and specialized plant species are more vulnerable to this risk (Larson & 

Barrett 2000), and, when possible, have to rely more on asexual reproduction for their persistence; 

this in turn can provoke a reduction in plant fitness, and in the ability to buffer the effects of 

environmental stochasticity. 
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6a. Appendix 1 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 
 

 

 

The 28 plant species co-flowering with Echium plantagineum in the 8 

studied Echium populations in 2005. For each plant, the species, family 

and the population where it was recorded are given (see text for details). 

Plant species Family Population 
   

Anagallis arvensis L. Primulaceae Ab, Ad, Ko, Mo, Pe  

Anchusa hybrida  Ten. Boraginaceae Ab 

Anthemis spp. Compositae Ab, Ad, Ko, Mo, Pa, Pe, Th 

Brassica nigra  (L.) Koch Cruciferae Ab, Un 

Bunias erucago L. Cruciferae Ko, Pe 

Calendula arvensis L. Compositae Ko, Mo, Pa, Un 

Carduus pycnocephalus L. Compositae Ad, Ko, Mo, Pa 

Chrysanthemum 
coronarium L. 

Compositae Th, Un 

Chrysanthemum segetum L. Compositae Mo 

Crepis spp. Compositae Ab, Ad, Ko, Mo, Pa, Pe, Un 

Erucastrum sp. Cruciferae Ko, Mo, Pa, Pe 

Geranium molle L. Geraniaceae Ko, Pa, Mo 

Hedypnois cretica (L.) 
Willd. 

Compositae Ab, Ko, Mo, Pa , Th 

Linaria pelisseriana (L.) 
Miller 

Scrophulariaceae Ko, Mo, Pe 

Lotus sp. Leguminosae Un 

Matricaria chamomilla L. Compositae Ab, Ad, Pa 

Moenchia mantica (L.) 
Bartl. 

Caryophyllaceae Ad, Pa, Pe 

Ornithogalum narbonense 
L. 

Liliaceae Ab, Ko, Mo 

Papaver argemone L. Papaveraceae Ab, Ad, Pe 

Petrorhagia (Raf.) G.López 
& Romo 

Caryophyllaceae Mo,  Pa,  Pe 

Prasium majus L. Labiatae Un 

Ranunculus sp. Ranunculaceae Ad 

Tolpis barbata (L.) Gaertner Compositae Pe 

Tordylium apulum L. Umbelliferae Ko, Mo 

Trifolium campestre 
Schreber 

Leguminosae Ab, Ad, Ko, Mo, Pa, Pe 

Trifolium echunatum Bieb. Leguminosae Un 

Trifolium nigrescens Viv. Leguminosae Ab, Ad, Ko, Mo, Pa, Pe, Th 

Trifolium tomentosum L. Leguminosae Ab, Pa,, Pe, Th, Un 
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6b. Appendix 2 

 
  Population  

Taxon 
Functional 

group 
Th Va Mo Sk Pa My Pe Pi Total 

           

Hymenoptera           

Apidae (Xylocopinae)           

Ceratina spp.(females) Af 1 2 1 - 5 - - 4 13 

Ceratina spp.(males) Am 2 - 1 - - - 1 - 4 

Xilocopa spp.(females) Af 5 5 6 1 - 6 9 19 51 

Xilocopa sp.(males) Am - - - - - - 1 - 1 

    Apidae (Nomadinae)           

Biastes spp.(females) Oth - 4 - - - - - - 4 

    Apidae (Apinae)           

Amegilla spp.(females) Af 8 12 6 6 12 15 2 16 77 

Amegilla spp.(males) Am 3 1 1 1 1 1 2 - 10 

Anthophora spp.(females) Af 3 2 5 7 1 1 6 - 25 

Anthophora spp.(males) Am 1 1 3 10 2 3 14 - 34 

Apis mellifera (females) AB 5 - 227 407 1 11 49 5 705 

Bombus spp.(females) AB 12 67 56 - - 92 - 115 342 

Eucera spp.(females) Af - 17 3 17 - 1 31 15 84 

Eucera spp.(males) Am - 16 - 2 - - 1 - 19 

Melecta spp.(females) Oth - - - 2 - - - - 2 

Tetralonia spp.(females) Af 1 4 3 - - 8 - 6 22 

Thyreus spp.(females) Oth 1 1 1 2 - - 2 1 8 

Thyreus spp.(males) Oth 1 - 3 5 - - 3 - 12 

    Halictidae           

Halictus spp.(females) Hfm - - - - - 8 - - 8 

Halictus spp.(males) Hfm - - - - - 3 - - 3 

Lasioglossum spp.(females) Hfm - 2 - - - - - - 2 

Lasioglossum spp.(males) Hfm - - 2 - - - - 1 3 

Pseudapis spp. Hfm - - 1 1 - - 1 - 3 

    Megachilidae           

Anthidium spp.(females) Mf 17 4 2 - - 9 1 - 33 

Anthidium spp.(males) Mm 11 2 5 - - 15 - - 33 

Chalicodoma spp.(females) Mf 37 11 29 31 61 26 10 9 214 

Chalicodoma spp.(males) Mm 21 5 12 3 8 18 22 2 91 

Coelioxys sp.(males) Mm 1 - - - - - - - 1 

          (continued) 
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Creightonella spp.(females) Mf - - 1 - - - - 1 2 

Creightonella spp.(males) Mm - - 1 1 1 - 1 - 4 

Eoanthidium spp.(females) Mf 2 - - - - - - - 2 

Eoanthidium sp.(males) Mm 1 - - - - - - - 1 

Hoplitis spp.(females) Mf - - - - - 4 - 4 8 

Hoplitis spp.(males) Mm - - 1 - - 4 - - 5 

Icteranthidium sp.(females) Mf - - 1 - - - - - 1 

Lithurgus spp.(males) Mm - 1 - - - - 1 - 2 

Megachile spp.(females) Mf 3 9 - 3 1 3 1 3 23 

Megachile spp.(males) Mm - 3 1 - 4 1 - 2 11 

Osmia spp.(females) Mf - - 2 - - 2 1 2 7 

Osmia spp.(males) Mm 1 - - - - - 1 - 2 

Rhodanthidium spp.(females) Mf - - - - - 2 - - 2 

Rhodanthidium spp.(males) Mm 2 - 1 - - 1 - 27 31 

Stelis sp.(females) Mf - - - - - - 1 - 1 

Other Hymenoptera   (wasps) - 2 1 4 - - - - - 7 

 Diptera - 1 14 1 7 1 - 1 3 28 

 Lepidoptera - - - 1 - - 3 - - 4 

 

List of insect visitors recorded in 8 populations of Ballota acetabulosa in 2005. For each site the number of insect caught 

during a total of 3 h of random collection is indicated (overall: 24 h). Functional groups are given in the second column 

(see text for details). 
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