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INTRODUCTION 

  

 

Biometric systems are automated methods for the identification of individuals 

based on their physiological (e.g. fingerprint, face, hand, retina, iris) or behavioral (e.g. 

voice, handwriting, keystroke style) characteristics. Biometric traits, differently from 

passwords and ID cards, cannot be easily altered, transferred, forgotten, lost or copied. 

In the past few years, academic and industrial interest in biometric systems had been 

considerably increased by the growing demand for reliable authentication techniques 

and by the availability of low-cost acquisition devices. In fact, automated identification 

systems can be very useful in several applications: access control, time and attendance 

systems, automatic surveillance, data protection, network security and secure web 

transactions. Among others, access control verification for computer systems and 

environmental surveillance are today the most promising application fields for these 

new technologies. 

Fingerprints are a very good solution in terms of uniqueness and acceptability; for this 

reason, they are widely adopted in civil and government applications. Moreover, 

nowadays automated fingerprint recognition is very fast and well suited to real-time 

applications. Originally, the use of fingerprints was limited to the forensic field as 

evidence for identification of criminals, but in the past few years several applications 

grew both in the civil and government field. Thanks to the increasing interest on their 

potential applications, research and investments in fingerprint-recognition systems 

considerably grew. Although this type of recognition systems are already available in 

the market, the research in this field is still particularly active for the following reasons: 

the need for making these systems more reliable and to limit their impact on privacy, 

and for developing suitable methodologies to evaluate their performance and to 

certificate their security level.  

The aim of this work is to study some of the main problems of fingerprint-based 
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biometric systems and to provide innovative solutions. To this purpose, firstly the 

evaluation and certification of the different aspects of these systems have been 

analyzed, from the quality of fingerprints and acquisition devices, to the accuracy of the 

whole fingerprint-recognition systems and the performance of its individual modules. 

Secondly, a new recognition algorithm specifically-designed to achieve a high 

performance even on light hardware (e.g. smartcards and embedded systems) has been 

proposed. 

The materials presented in this thesis are the result of three years of research activities 

and experimentations, as shown by the publications cited in bibliography [1] [2] [3] [4] 

[5] [6] [7] [8].  

The first chapter provides a general introduction to the problem, describing biometric 

systems and fingerprints in detail, together with their main applications and major 

issues. 

The second chapter explains the contributions to fingerprint acquisition devices quality-

certification. At first, the specifications and the standards currently at the state-of-the-art 

are presented in detail. Then, a well-defined testing protocol is described and, following 

this protocol, a set of experiments to measure the effective impact of such specifications 

on the performance of automatic fingerprint recognition systems is carried out. Starting 

from the experimental results obtained, three new sets of balanced requirements, to 

certify fingerprint scanners’ quality, are proposed. Finally, the new specifications are 

compared with the state-of-the-art, showing that the new ones allow a better trade-off 

between the cost to produce a compliant scanner and the expected recognition 

performance on images acquired by that scanner. At present, the Italian National Center 

for ICT (CNIPA) uses these new specifications as a point of reference for the Italian 

biometric passport and identity card. 

The third chapter presents a new fingerprint recognition algorithm based on a novel 3D 

minutia local structure representation. Thanks to the local structure invariance, fixed-

length and bit-oriented coding, some simple but very effective metrics have been 

defined to compute local similarities and to consolidate them into a global score. Then 

the proposed algorithm is compared, on a reference benchmark, with three well-known 

techniques; the experimental results definitely prove its superiority and demonstrate the 

feasibility of obtaining a very effective (and interoperable) fingerprint recognition 

implementation for light platforms. The new algorithm is so promising that a patent has 
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been  filed on it. 

The fourth chapter reports the work developed in the field of the performance 

evaluation of fingerprint recognition systems. In particular, the chapter discusses the 

organization and the results of the international competition FVC2006 and the design, 

development and organization of a revolutionary new approach to performance 

evaluation of fingerprint-based systems: FVC-onGoing. 

Finally, the last chapter reports some concluding remarks on the work done and 

discusses possible future works. 
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1  

BIOMETRIC SYSTEMS AND 

FINGERPRINTS 

 

 

1.1 Biometric Systems 

 

Rapid advancements in the field of communications, computer networking and 

transportation, coupled with heightened concerns about identity fraud and national 

security, has resulted in a pronounced need for reliable and efficient identity 

management schemes in a myriad of applications. Traditional authentication techniques 

based on passwords and tokens can easily be lost, shared manipulated or stolen thereby 

compromising the intended security. The advent of biometrics has served to address 

some of the shortcomings of traditional authentication methods [8]. 

Biometrics is the science of recognizing the identity of a person based on the physical or 

behavioral attributes of the individual; therefore, a biometric system is essentially a 

pattern recognition system able to verify or recognize the identity of a living person on 

the basis of some physiological characteristics, like a fingerprint or iris pattern, or some 

aspects of behavior, like handwriting or keystroke patterns (see Figure 1.1).  

The need for biometrics can be found in federal, state and local governments, in the 

military, and in commercial applications. Enterprise-wide network security 

infrastructures, government IDs, secure electronic banking, investing and other financial 

transactions, retail sales, law enforcement, and health and social services are already 

benefiting from these technologies. Question such as ―Is this person authorized to enter 

the facility?‖, ―Is this individual entitled to access the privileged information?‖, and 

―Did this person previously apply for a job?‖ are routinely asked in a variety of 

organizations in both public and private sectors. 
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Figure 1.1 - Classification of most common biometric traits. Other biometric strategies are being 

developed such as those based on hand and finger veins, ear canal, facial thermogram, odor and 

footprints. 
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Utilizing biometrics for personal authentication is becoming convenient and 

considerably more accurate than current methods based on credentials (passwords, PINs 

and IDs). 

This is because biometrics links the event to a particular individual (based on ―who you 

are‖ and not ―what you know‖ like passwords and PINs or ―what you have‖ such as ID 

card), is convenient (nothing to carry or remember), accurate and is becoming socially 

acceptable and inexpensive..  

Although biometric technologies vary in complexity, capabilities, and performance, 

they all share several elements. Biometric identification systems are essentially pattern 

recognition systems. They use acquisition devices such as cameras and scanning 

devices to capture images, recordings, or measurements of an individual’s 

characteristics, and they use computer hardware and software to extract, encode, store, 

and compare these characteristics. Because the process is automated, biometric decision 

making is generally very fast, in most cases taking only a few seconds in real time. 

 

1.1.1 A Historical Overview 

 

The term "biometrics" is derived from the Greek words bios (life) and metron (to 

measure).  

The ancient Egyptians and the Chinese played a large role in biometrics' history. 

Although biometric technology seems to belong in the twenty-first century, the history 

of biometrics goes back thousands of years. In early Egyptian history, traders were 

identified by their physical descriptors to differentiate between trusted traders of known 

reputation and previous successful transactions, and those new to the market. Possibly 

the first known example of biometrics in practice was a form of finger printing being 

used in China in the 14th century, as reported by explorer Joao de Barros. He wrote that 

Chinese merchants used fingerprints to settle business transactions and Chinese parents 

also used fingerprints and footprints to differentiate children from one another.  

Others date the origins of biometrics in the 1890s to Alphonse Bertillon. He was an 

anthropologist and police desk clerk in Paris when he sought to fix the problem of 

identifying convicted criminals and turned biometrics into a distinct field of study. He 

developed a method of multiple body measurements (including such measures as skull 
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diameter, arm and foot length, shapes of the body in relation to movements and 

differential markings on the surface of the body such as scars, birth marks, tattoos, etc.) 

used by police authorities throughout the world for identification purpose (see Figure 

1.2). Bertillon’s system of identification was not without fault. For example, it relied 

heavily on precise measurements for identification purposes, and yet two people 

working on measurements for the same person would record different findings.  

 

 

Figure 1.2 - Diagram of Bertillon Measurements. 

 

Additionally, it turned out to be the case that the features by which Bertillon based his 

identification system were not unique to any one individual. This led to the possibility 
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of one person being convicted of another person’s crimes. This possibility became 

abundantly clear in 1903 when a Will West was confused with a William West. Though 

it would later turn out to be the case that the two were identical twins, the issues posed 

by the Bertillon’s system of identification were clear. After the failure of 

anthropometry, the police started using finger printing on the scene, as a more efficient 

and accurate means of identification, which was developed by Richard Edward Henry 

of Scotland Yard, essentially reverting to the same methods used by the Chinese for 

years. 

True biometric systems began to emerge in the latter half of the twentieth century, 

coinciding with the emergence of computer systems. In the 1960s and '70s, signature 

biometric authentication procedures were studied, the first semi-automatic face 

recognition system was developed by W. W. Bledsoe under contract to the US 

government, the first model of acoustic speech production was created by Gunnar Fant, 

and the Federal Bureau of Investigation (FBI) began its activity of developing a system 

to automate its fingerprint identification process.  

Due to the growing demand for automatic personal recognition in our society, biometric 

systems have rapidly grown beyond forensic into civilian applications. Companies 

involved with new systems number in the hundreds and continue to improve their 

methods as the technology available to them advances. Prices for the hardware required 

continue to fall, making systems more feasible for low and mid-level budgets. As the 

industry grows however, so does the public concern over privacy issues. Laws and 

regulations continue to be drafted and standards are beginning to be developed.  

Although finger printing is the most popular biometric characteristic still in use today, 

other biometric technologies started developing rapidly in the last quarter of the 

twentieth century. These techniques sought to measure human voices, hands, irises, 

retina, faces, etc. (see Figure 1.1). 

 

1.1.2 A Generic Biometric System Model 

 

Although biometric systems that use different biometric characteristics are relied 

on widely different technologies, in general, they are based on the same core structure. 

Fundamentally, a biometric system is a pattern recognition system that acquires 
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biometric data from an individual, extracts a salient feature set from the data, compares 

this feature set against the feature set(s) stored in a database, and executes an action 

based on the result of the comparison [8]. Therefore, a generic biometric system can be 

viewed as having four main modules (see Figure 1.3): i) a sensor module that defines 

the human machine interface, ii) a feature extraction module that extracts a set of 

relevant discriminatory features from the acquired data to represent the underlying trait, 

iii) a matching module that compares the extracted features against the stored template 

to generate a match score, and iv) a database module that stores biometric information.  

 

 

 

Figure 1.3 - The basic block diagrams of a generic biometric system. 
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An important issue in designing a biometric system is to determine how an individual is 

recognized. Depending on the  particular application context, a biometric system may 

operate either in the verification or/and identification mode. In the former, the system 

confirms or refuses an individual’s identity by comparing the acquired data with the 

biometric template (corresponding to the claimed identity) stored in the database. 

Whereas in the latter, the system performs a one-to-many comparison to recognize the 

person’s identity or fail if the subject is not stored in the database. Figure 1.3 shows the 

block diagrams of a generic biometric verification and identification systems. Both 

recognition modes have in common the enrollment stage; in the enrollment phase, the 

biometric characteristic is acquired by a biometric reader, a quality check is performed 

to guarantee the acquired data, the digital representation of the characteristic is 

processed to produce a compact representation called template, finally the resulting 

template is stored in the biometric database. In the verification task, first personal 

identification information (user’s name, PIN, etc.) is provided and a template is 

produced acquiring the characteristic of the individual using the biometric reader and 

processing it by the feature extractor. Then, the acquired template is compared against 

the template of a single user, retrieved from the database using the provided personal 

identification information. Instead, in the identification task, no personal identification 

information is given and the matching module compares the input template against all 

the templates contained in the system database. The result is either the identity of an 

enrolled person or the message ―not identified‖. 

 

1.1.3 Performance of a biometric system 

 

A biometric system rarely encounters two samples that result in exactly the same 

feature set. In general, this is due imperfect sensing conditions (e.g., noisy fingerprint 

due to sensor malfunction), alterations in the user’s biometric characteristic (e.g., 

respiratory ailments impacting speaker recognition), changes in ambient conditions 

(e.g., inconsistent illumination levels in face recognition) and variations in the user’s 

interaction with the sensor (e.g., occluded iris). The variability observed in the 

biometric feature set of an individual is referred to as intra-class variation, and the 

variability between feature sets originating from two different individuals is known as 
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inter-class variation. A useful set exhibits small intra-class variation and large inter-

class variation [8]. The response of a matcher in a generic biometric recognition system 

is usually a similarity score 𝑠 that measures the similarity between two biometric 

feature sets. The system decision is regulated by a threshold 𝑡: pairs of feature sets 

generating similarity score higher than or equal to 𝑡 are called matching pairs; whereas 

pairs producing scores lower than 𝑡 are called as non-matching pairs. A similarity score 

is known as a genuine score if it is a result of matching two biometric samples of the 

same user; it is known as an impostor score if it involves comparing two biometric 

samples originating from different users. 

A generic biometric verification system makes two types of errors: i) mistaking 

biometric measurements from two different individuals to be from the same one (called 

false match or false acceptance) and ii) mistaking two biometric measurements from the 

same person to be from two different persons (called false non-match or false rejection). 

In a biometric system, the False Match Rate (FMR) can be defined as the probability 

that an impostor score exceeding the threshold 𝑡; in the same way, the False Non-Match 

Rate (FNMR) may be defined as the probability that a genuine score falling below the 

threshold 𝑡. Generally to evaluate the accuracy of a generic biometric system one must 

collect scores produced from a number of genuine matching (called genuine 

distribution), and scores generated from a number of impostor matching (called 

impostor distribution). Figure 1.4 reports FMR and FNMR over genuine and impostors 

distributions: 

 

 

 

Figure 1.4 - FMR and FNMR for a given threshold 𝑡 are displayed over the genuine and 

impostor score distributions. 
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As shown in Figure 1.4 FMR and FNMR are functions of the system threshold 𝑡. If 𝑡 is 

decreased to make the system more tolerant the FMR increases and FNMR decreases; 

vice versa, if 𝑡 is raised to make the system more secure, then FMR decreases and 

FNMR increases. A system designer may not know in advance the particular application 

for which the system may be used. So it is advisable to report system performance at all 

operating points (threshold, 𝑡) [9]. The FMR and FNMR at various values of 𝑡 can be 

summarized using a Detection-Error Tradeoff (DET) curve that plots the FNMR against 

the FMR at various threshold and provides a more direct view of the error-vs-error 

tradeoff (see Figure 1.5).      

 

 

 

Figure 1.5 – An example of DET graph. 

 

Additionally to the above distributions and curves, some ―compact‖ indices are also 

used to summarize the accuracy of a generic biometric verification system [9] [10]: 

 Equal-Error Rate (EER) denotes the error rate at the threshold 𝑡 for which FMR 

and FNMR are identical (see Figure 1.6); 
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 ZeroFNMR is the lowest FMR at which no FNMR occur (see Figure 1.6); 

 ZeroFMR is the lowest FNMR at which FMR occur (see Figure 1.6); 

 FMR𝑥 is the lowest FNMR for 𝐹𝑀𝑅 ≤
1

𝑥
; 

 FNMR𝑥 is the lowest FMR for 𝐹𝑁𝑀𝑅 ≤
1

𝑥
; 

 

 

Figure 1.6 - An example of FMR and FNMR curves, where the points corresponding to EER, 

ZeroFNMR, and ZeroFMR are highlighted. 

 

The real performance requirements of a biometric system are very much application 

related. For example, in some forensic applications such as criminal identification, it is 

the FNMR that is a major attention and not the FMR: that is, we do not want to ignore a 

criminal even at the risk of manually examining a large number of potential matches 

identified by the biometric system. At the other extreme, a very low FMR may be the 

most important factor in a highly secure access control application, where the primary 

objective is not to let in any impostors although we are concerned with the possible 

inconvenience to legitimate users due to a high FNMR [9]. 

In the same way, the performance estimation of a generic biometric identification 

system can be derived by the error estimates in the verification mode. 

𝑡 

er
ro

r 

EER 

ZeroFNMR ZeroFMR 

FNMR(𝑡) FMR(𝑡) 



 

Chapter 1: Biometric Systems and Fingerprints 

15 

 

1.1.4 Biometric characteristics 

 

A large number of biometric characteristics are being used in various applications (see 

Figure 1.1) and the choice of a biometric trait for a specific use depends on a 

multiplicity of issues besides its matching performance. Jain et al. [11] have detected 

seven factors that determine the correctness of a biometric trait to be used in a specific 

biometric application. 

1. Acceptability: Peoples in the target population that will use the application 

should be disposed to present their biometric characteristic to the system; 

2. Circumvention: This refers to the simplicity with which the attribute of a 

person can be imitated; 

3. Collectability: It should be possible to acquire and digitize the biometric trait 

using suitable devices that do not cause unjustified inconvenience to the 

individual;  

4. Performance: The recognition accuracy and the resources required to achieve 

that accuracy should be meet the constraints imposed by the application; 

5. Permanence: The biometric characteristic should be sufficiently invariant over 

a period of time with respect to the matching algorithm;  

6. Uniqueness: The given trait should be adequately different across persons 

comprising the population; 

7. Universality: Every individual accessing the application should possess the 

characteristic. 

Table 1.1 shows a comparison of existing biometric characteristics in terms of those 

parameters. No single biometric trait is expected to effectively meet all the requirements 

imposed by all applications.  

There is no overall best biometric trait, since the biometric trait most suited to a given 

application depends on many aspects, including the nature and requirements of the 

application itself [8]. On the other hand, from Table 1.1 it is clear that fingerprint 

recognition has a very good balance of all the desirable properties. Every human being 

possesses fingerprints, with the exception of any hand-related disabilities. Fingerprints 

are very distinctive; fingerprint details are permanent, even if they may momentarily 

change slightly to cuts and bruises on the skin or weather conditions. This is fingerprint 

recognition is one of the most largely adopted biometric technologies (see Figure 1.7). 
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Table 1.1 - Comparison of various biometric technologies (H=High, M=Medium, L=Low). A 

low ranking indicates poor performance in the evaluation criterion whereas a high ranking 

indicates a very good performance [12]. 
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Figure 1.7 – Biometric Market Report estimated the revenue of various biometrics in the year 

2007. 
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1.2 Fingerprints 

 

A fingerprint is the pattern of ridges and valleys on the surface of a fingertip (see 

Figure 1.8) whose formation is determined during the first seven months of fetal 

development [8] and ridge configurations do not change throughout the life of a person 

except due to accidents. By definition, identical twins cannot be distinguished based on 

DNA and most of the physical characteristics such as body type, voice and face are very 

similar. Although the minute details in the fingerprints of identical twins are different 

[13]. These properties make fingerprints a very attractive biometric characteristic.  

 

 

Figure 1.8 – Example of a portion of the fingertip’s surface.  

 

1.2.1 History 

 

Fingerprints have been found on ancient Babylonian clay tablets, seals, and 

pottery. They have also been found on the walls of Egyptian tombs and on Minoan, 

Greek, and Chinese pottery — as well as on bricks and tiles in Babylon and Rome. 

Some of these fingerprints were deposited unintentionally by workers during 

fabrication; sometimes the fingerprints served as decoration. However, on some pottery, 

fingerprints were impressed so deeply that they were likely intended to serve as the 

equivalent of a brand label. 

Fingerprints were also used as substitutes for signatures. In Babylon (from 1885-1913 

B.C.E.), in order to protect against forgery, parties to a legal contract impressed their 
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fingerprints into the clay tablet on which the contract had been written. By 246 B.C.E., 

Chinese officials impressed their fingerprints in clay seals, which were used to seal 

documents. With the advent of silk and paper in China, parties to a legal contract 

impressed their handprints on the document. Sometime before 851 C.E., an Arab 

merchant in China, Abu Zayd Hasan, witnessed Chinese merchants using fingerprints to 

authenticate loans. By 702 C.E., Japan had adopted the Chinese practice of sealing 

contracts with fingerprints. Supposedly, in 14th century Persia, government documents 

were authenticated with thumbprints. 

Although the ancient peoples probably did not realize that fingerprints could identify 

individuals, references from the age of the Babylonian king Hammurabi (1792-1750 

B.C.E.) indicate that law officials fingerprinted people who had been arrested. In China 

around 300 C.E. handprints were used as evidence in a trial for theft. In 650 C.E., the 

Chinese historian Kia Kung-Yen remarked that fingerprints could be used as a means of 

authentication. In his Jami al-Tawarikh, Persian official and physician Rashid-al-Din 

Hamadani (1247-1318) comments on the Chinese practice of identifying people via 

their fingerprints: "Experience shows that no two individuals have fingers exactly 

alike." 

It was not until the late sixteenth century that the modern scientific fingerprint technique 

was first initiated; in 1684, the English, Nehemiah Grew, published the first scientific 

paper reporting his study on the ridge, valley, and pore structure in fingerprints. 

Since then, a large number of researcher have invested huge amounts of effort on 

fingerprint studies. 

An important advance in fingerprint recognition was made in 1899 by Edward Henry, 

who established the ―Henry system‖ of fingerprint classification. 

In the early twentieth century, fingerprint recognition was formally accepted as a valid 

personal identification method and became a standard routine in forensics. 

With the rapid expansion of fingerprint recognition in forensics, operational fingerprint 

databases became so huge that manual identification became infeasible (in 1924 the FBI 

databases contained over 800.000 fingerprint cards; today stands well over 200 million 

cards and the number is continuously growing). In 1969, the FBI (Federal Bureau of 

Investigation) and NIST (National Institute of Standards and Technology) began to 

invest a large amount of effort to develop a system to automate its fingerprint 

identification process [9]. Their efforts were so successful that today, almost every law 
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enforcement agency worldwide uses a commercial IAFIS (Integrated Automated 

Fingerprint Identification System).  

Automatic fingerprint recognition technology has now rapidly grown beyond forensic 

applications into civilian applications. In fact, fingerprint-based biometric systems are 

so popular that they have almost become the synonym for biometric systems [9]. 

 

1.2.2 Analysis and Representation 

 

The term fingerprint normally refers to an impression of the friction ridge of the 

last joint of fingers and thumbs. Fingerprints may be deposited in natural secretions, 

made by ink transferred from the peaks of friction skin ridges to a relatively smooth 

surface such as a fingerprint card or acquired by directly sensing the finger surface with 

an electronic fingerprint scanner [9]. 

The most evident structural characteristic of a fingerprint is a pattern of interleaved 

ridges and valleys often run in parallel (see Figure 1.9).   

 

Figure 1.9 - Ridges and valleys in a fingerprint image. 

 

When analyzed at the global level, the fingerprint pattern exhibits one or more zones 

where the ridge lines assume distinctive shapes. These zones, called singularities, may 

be classified into three categories: loop, delta, and whorl (see Figure 1.10) [9].  

 

Figure 1.10 - Singular regions (white boxes) and core points (small circles) in fingerprint 

images. 
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At the local level, important features, called minutiae can be found in the fingerprint 

pattern. The term minutia refers to various ways that the ridges can be discontinuous 

(see Figure 1.11) [9]. Each minutia is denoted by its type, the x- and y-coordinates and 

the angle between the tangent to the ridge line at the minutia position and the horizontal 

axis ( see Figure 1.12).  

 

 

 

Figure 1.11 - Seven most common minutiae types. 

 

 

 

Figure 1.12 - a) a ridge ending minutia: [x0,y0] are the minutia coordinates;  is the angle that the 

minutia tangent forms with the horizontal axis; b) a bifurcation minutia:  is now defined by 

means of the ridge ending minutia corresponding to the original bifurcation that exists in the 

negative image. 

 

 

Moreover, if a fingerprint image is acquired at a high resolution (at least 1000dpi), it is 

possible to identify the sweat pores (see Figure 1.13) [9]. Although pore information is 

highly distinctive, few automatic matching techniques use pores since their reliable 

detection requires very high resolution and good quality fingerprint images [9].     
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Figure 1.13 – A fingerprint where pores are highlighted. 

 

 

1.2.3 Applications 

 

Fingerprint recognition is rapidly evolving technology that has been widely used 

in forensics and has a very strong potential to be widely adopted in a broad range of 

civilian applications [9].  

In forensics they are used not only to link suspects to crime scenes, but also to link 

persons arrested under another name to previous arrests, identify deceased persons, and 

associate persons with questioned documents. The cumbersome and time-consuming 

nature of filing, searching and matching fingerprints manually led to efforts in 

automating parts of the process as computer technology became more readily available 

to law enforcement agencies [14]. 

Recently, in civilian applications, fingerprints have been applied to 

application/registration forms in an attempt to associate applicants with certain benefits 

(welfare, voting, banking). In many countries, it has been, and still is, a common 

practice to capture fingerprints for all individuals when they reach a certain age in order 

to issue a national identity card [14]. Figure 1.14 summarizes the main application fields 

in the civilian market.   
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Figure 1.14 – Graph of the main application fields of fingerprint recognition systems in the 

civilian market. 
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2  

FINGERPRINT ACQUISITION SENSORS 

AND THEIR QUALITY 

2.1 Introduction 

 

One of the most important elements needed for fingerprint automation was a 

method for scanning inked fingerprint cards that would provide images of sufficient 

quality for subsequent enhancement, feature extraction and matching (see Figure 2.1). 

 

 

Figure 2.1 – An example of inked fingerprint card. 

 

However, these days there is a trend to move away from capturing fingerprints on paper 

using ink; most of the fingerprint input devices now used in both forensic and civil 

fingerprint systems directly scan the fingerprint from the finger (Figure 2.2). These 

scanners are called ―live-scan‖ fingerprint devices. The most common types of live-scan 

fingerprint devices either directly digitize the fingerprint image or digitize the 
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fingerprint image created through optical means. For many civil and commercial 

applications, there is no mandate for a set of ten fingerprints for each individual to be 

recorded by the system. Often, it is sufficient for the scanning device to capture a 

fingerprint from a single finger [14]. 

 

 

Figure 2.2 – Different types of fingerprint scanners. 

 

The most important part of a fingerprint scanner is the sensor, which is the component 

where the fingerprint image is formed. Almost all the existing sensors belong to one of 

the three families: optical, solid-state and ultrasound (see [9] for a throughout treatment 

of this topic). 

The quality of a fingerprint scanner, the size of its sensing area and the resolution can 

heavily influence the performance of a fingerprint recognition algorithm (as shown in 

Figure 2.3) (for more details see [3] [2] [1]). 
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Figure 2.3 – Fingerprint images of the same finger as acquired by different commercial 

scanners. Images are reported with right proportions: a) Biometrika FX2000, b) Digital Persona 

UareU2000, c) Identix DFR200, d) Ethentica TactilSense T-FPM, e) ST-Microelectronics 

TouchChip TCS1AD, f) Veridicom FPS110, g) Atmel FingerChip AT77C101B, h) Authentec 

AES4000 [9]. 

 

Particularly in large-scale biometric applications (such as the US-VISIT [16] and PIV 

[17] programs in the United States, the Biometric Passport in Europe [17], the 

Malaysian government multipurpose card [18] and the Singapore biometric passport 

[19] in Asia), the choice of the acquisition devices is one of the most critical issues 

since many, often conflicting, requirements have to be taken into account, such as the 

need for high-quality images, interoperability requisites and budget. 
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Typically, in large-scale projects a set of specifications is given for the input devices, in 

order to guarantee a minimum quality level for some relevant parameters. 

To maximize compatibility between digital fingerprint images and ensure good quality 

of the acquired fingerprint impressions, the Federal Bureau of Investigation (FBI) 

established an IAFIS image-quality specification (IQS) in order to define the 

quantitative image-quality requirements for IAFIS fingerprint scanners. The FBI IAFIS 

IQS was defined in Appendix F of the Electronic Fingerprint Transmission 

Specification (EFTS) [20]. More recently, to support the Personal Identity Verification 

(PIV) program [17], whose goal is to improve the identification and authentication for 

access to U.S. Federal facilities and information systems, the FBI established a PIV IQS 

[22], which defines the quantitative image-quality requirements for single-fingerprint 

capture devices suitable for application in the PIV program; these requirements are 

similar to (but less stringent than) the IAFIS ones. Finally, the PassDEÜV requirements, 

targeted to single-finger scanners, were established by the German Federal Office for 

Information Technology Security (BSI) for the capture and quality assurance of 

fingerprints by the passport authorities and the transmission of passport application data 

to the passport manufacturers [23]. In these specifications, the ―quality‖ is defined as 

―fidelity‖ of the scanner in reproducing the original fingerprint pattern, and it is hence 

quantified by measures traditionally used for vision, acquisition, and printing systems: 

geometric accuracy, gray-level dynamic range, Signal-to-Noise Ratio (SNR), Spatial 

Frequency Response (SFR), etc.. This definition of quality is clearly appropriate to 

IAFIS and other applications where the images may be examined by forensic experts. In 

fact human experts’ comparison techniques heavily rely on very fine details such as 

pores, incipient ridges, etc., for which the fidelity to the original signal is fundamental.  

On the other hand, the situation is different in totally-automated biometric systems, 

where: i) the images are stored but used only for automated comparisons, or ii) only 

fingerprint templates are stored. As shown in the following, in these cases it may be 

more appropriate to define the fingerprint scanner quality as the ability of a fingerprint 

scanner to acquire images that maximize the accuracy of automated recognition 

algorithms (in the following called operational quality) (for more details see [3] [2] 

[1]). A first advantage of the operational quality is that it allows to estimate the loss of 

performance of a scanner compliant to a given IQS with respect to an ―ideal scanner‖.  
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2.2 Image Quality Specifications 

 

The IAFIS IQS was defined in Appendix F of the EFTS [20]; test procedures to 

verify compliance of fingerprint scanners to the specification were delineated in [23], 

which has been recently revised and updated in [24]. At the moment, the most updated 

PIV IQS are available in [22], with the corresponding test procedures described in [25]. 

The PassDEÜV IQS [23] are identical to the FBI IAFIS requirements except for the 

acquisition area. These specifications consider the following quality parameters: 

 Acquisition area: Capture area of the scanner (𝑤 × ). 

 Native resolution: The scanner’s true internal resolution (𝑅𝑁) in pixels per inch 

(ppi). 

 Output resolution: The resolution of the scanner’s final output fingerprint image 

(𝑅𝑂) in ppi. 

 Gray-level quantization: Number of gray levels in the final output fingerprint 

image. 

 Geometric accuracy: Geometric fidelity of the scanner, measured as the absolute 

value of the difference 𝐷, between the actual distance 𝑋 between two points on a 

target and the distance 𝑌 between those same two points as measured on the 

output scanned image of that target; this parameter is measured in two different 

modalities: across bar (𝐷𝐴𝐶 ) and along bar (𝐷𝐴𝐿), see [24] for more details. 

 Input/output linearity: The degree of linearity is measured as the maximum 

deviation 𝐷𝐿𝑖𝑛  of the output gray levels from a linear least -squares regression 

line fitted between input signal and output gray levels scanning an appropriate 

target (see [24]). 

 Spatial frequency response: The device modulation transfer function (MTF) 

measured at nominal test frequencies using a continuous-tone sine-wave target. 

 Gray-level uniformity: Defined as the gray-level differences found in the image 

obtained by scanning a uniform dark (or light) gray target. This parameter is 

evaluated by dividing the acquisition area in 0.25 × 0.25-in regions and 

measuring the differences between: 1) the average gray levels of adjacent 

rows/columns (𝐷𝑅𝐶
𝑑𝑎𝑟𝑘 , 𝐷𝑅𝐶

𝑙𝑖𝑔𝑡
); 2) the average gray level of any region and the 

gray level of each pixel (𝐷𝑃𝑃
𝑑𝑎𝑟𝑘 , 𝐷𝑃𝑃

𝑙𝑖𝑔𝑡
); and 3) the average gray levels of any 
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two regions (𝐷𝑆𝐴
𝑑𝑎𝑟𝑘 , 𝐷𝑆𝐴

𝑙𝑖𝑔𝑡
). 

 Signal-to-noise ratio: The signal is defined as the difference between the 

average output gray levels obtained from acquisition of a uniform light gray and 

a uniform dark gray target, measuring the average values over independent 

0.25 × 0.25-in areas; the noise is defined as the standard deviation of the gray 

levels in those areas, leading to two values 𝑆𝑁𝑅𝑑𝑎𝑟𝑘  and 𝑆𝑁𝑅𝑙𝑖𝑔𝑡 . 

 Fingerprint gray range: Given a set of scanned fingerprint images, the dynamic 

range (𝐷𝑅) of each image is defined as the total number of gray levels that are 

present in more than four pixels. 

 Fingerprint artifacts and anomalies, fingerprint sharpness and detail rendition: 

scanned fingerprint images are visually examined to determine whether any 

significant artifacts, anomalies, or false details are present. 

Table 2.1 reports, for each aforementioned quality parameter, the requirements that a 

scanner has to meet in order to comply with the three IQS; note that the IAFIS IQS 

targets 500- and 1000-ppi scanners; hence, some requirements depend on the scanner 

resolution. The PIV and PassDEÜV IQS target only 500-ppi scanners. 

 

 

Figure 2.4 - Minimum values 𝑀𝑇𝐹𝑚𝑖𝑛  𝑓  at nominal frequencies 𝑓 (expressed in cycles per 𝑚𝑚) 

for the IAFIS (1000ppi and 500ppi) and PIV (500ppi) IQS. Values for PassDEÜV IQS are 

equal to IAFIS (500ppi) IQS.  
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Table 2.1 - A comparison of IAFIS, PIV and PassDEÜV IQS requirements for the main quality 

parameters; the differences in the PIV and PassDEÜV requirements respect to the IAFIS 

requirements are highlighted using bold font. 

Parameter 
Requirement 

IAFIS IQS (see [20][24]) PIV IQS (see [22][25]) PassDEÜV IQS (see [23]) 

Acquisition 

area 

Depending on the scanner type;  

for a plain 4-fingers scanner: 

𝑤 ≥  73.2𝑚𝑚  2.88”  and 

 ≥  45.7𝑚𝑚  1.8”  

 

 

𝑤 ≥  𝟏𝟐. 𝟖𝒎𝒎  𝟎. 𝟓𝟎𝟒”  and   

 ≥  𝟏𝟔. 𝟓𝒎𝒎 (𝟎. 𝟔𝟓𝟎”)  

 

 

w ≥  𝟏𝟔. 𝟎𝐦𝐦  𝟎. 𝟔𝟑𝟎  and   

h ≥  𝟐𝟎. 𝟎𝐦𝐦  𝟎. 𝟕𝟖𝟕   

Native 

resolution 

𝑅𝑁  ≥  500𝑝𝑝𝑖 (500ppi scanners) 

𝑅𝑁  ≥  1000𝑝𝑝𝑖 (1000ppi scanners) 

𝑅𝑁  ≥  500𝑝𝑝𝑖  

Output 

resolution 

𝑅𝑂  =  500𝑝𝑝𝑖 ±  1% (500ppi scanners) 

𝑅𝑂  =  1000𝑝𝑝𝑖 ±  1% (1000ppi scanners) 

𝑅𝑂  =  500𝑝𝑝𝑖 ±  𝟐%  𝑅𝑂  =  500𝑝𝑝𝑖 ±  1%  

Gray-level 

quantization 
256 gray-levels (8 bpp) 

Geometric 

accuracy 

At least in 99% of the test measurements: 

𝐷𝐴𝐶 ≤ 𝑚𝑎𝑥{0.0007”,  0.01 ∙ 𝑋}, 𝑋 ≤ 1.50” 

(500ppi) 

𝐷𝐴𝐶 ≤ 𝑚𝑎𝑥 0.0005”,  0.0071 ∙ 𝑋 , 𝑋 ≤ 1.50" 

(1000ppi) 

𝐷𝐴𝐿  ≤  0.016”  

At least in 99% of the test measurements: 

𝐷𝐴𝐶  ≤  𝑚𝑎𝑥{𝟎. 𝟎𝟎𝟏𝟑”,  𝟎. 𝟎𝟏𝟖 ∙ 𝑿}, 𝑋 ≤

1.50”  

 

 

 

𝐷𝐴𝐿  ≤  𝟎. 𝟎𝟐𝟕”  

At least in 99% of the test measurements: 

𝐷𝐴𝐶 ≤ 𝑚𝑎𝑥{0.0007”,  0.01 ∙ 𝑋}, 𝑋 ≤ 1.50”  

 

 

 

𝐷𝐴𝐿  ≤  0.016”  

Input/output 

linearity 

𝐷𝐿𝑖𝑛 ≤  7.65  No requirements 𝐷𝐿𝑖𝑛 ≤  7.65  

Spatial 

frequency 

response 

For each spatial frequency f considered: 

𝑀𝑇𝐹𝑚𝑖𝑛  𝑓  ≤  𝑀𝑇𝐹 𝑓  ≤  1.05  

(see Figure 2.4 for MTFmin  𝑓  values) 

For each spatial frequency f considered: 

𝑴𝑻𝑭𝒎𝒊𝒏 𝒇  ≤  𝑀𝑇𝐹 𝑓  ≤  𝟏. 𝟏𝟐  

(see Figure 2.4 for 𝑀𝑇𝐹𝑚𝑖𝑛  𝑓  values) 

For each spatial frequency f considered: 

MTFmin  f  ≤  MTF f  ≤  1.05  

(see Figure 2.4 for MTFmin  f  values) 

Gray level 

uniformity 

At least in 99% of the cases: 

DRC
dark ≤ 1 ; DRC

light
≤ 2  

At least for 99.9% of the pixels: 

DPP
dark ≤ 8 ; DPP

light
≤ 22 

For every two small areas: 

𝐷SA
𝑑𝑎𝑟𝑘 ≤ 3 ; 𝐷SA

𝑙𝑖𝑔𝑡
≤ 12 

At least in 99% of the cases: 

DRC
dark ≤ 𝟏. 𝟓 ; DRC

light
≤ 𝟑 

At least for 99% of the pixels: 

DPP
dark ≤ 8 ; DPP

light
≤ 22 

For every two small areas: 

𝐷SA
𝑑𝑎𝑟𝑘 ≤ 3 ; 𝐷SA

𝑙𝑖𝑔𝑡
≤ 12  

At least in 99% of the cases: 

DRC
dark ≤ 1 ; DRC

light
≤ 2  

At least for 99.9% of the pixels: 

DPP
dark ≤ 8 ; DPP

light
≤ 22 

For every two small areas: 

𝐷SA
𝑑𝑎𝑟𝑘 ≤ 3 ; 𝐷SA

𝑙𝑖𝑔𝑡
≤ 12 

Signal-to-noise 

ratio
1
 

𝑆𝑁𝑅𝑑𝑎𝑟𝑘  ≥  125 ; 𝑆𝑁𝑅𝑙𝑖𝑔𝑡  ≥  125 𝑆𝑁𝑅𝑑𝑎𝑟𝑘  ≥  𝟕𝟎. 𝟔 ; 𝑆𝑁𝑅𝑙𝑖𝑔𝑡  ≥  𝟕𝟎. 𝟔 𝑆𝑁𝑅𝑑𝑎𝑟𝑘  ≥  125 ; 𝑆𝑁𝑅𝑙𝑖𝑔𝑡  ≥  125 

Fingerprint 

gray range 

At least for 80% of the fingerprint images: 

𝐷𝑅 ≥  200 

At least for 99% of the fingerprint images: 

𝐷𝑅 ≥  128 

At least for 80% of the fingerprint images: 

𝐷𝑅 ≥  𝟏𝟓𝟎 

At least for 80% of the fingerprint images: 

𝐷𝑅 ≥  200 

At least for 99% of the fingerprint images: 

𝐷𝑅 ≥  128 

Fingerprint 

artifacts and 

anomalies 

Artifacts or anomalies […] shall not be 

significant enough to adversely impact support 

to […] Automated Fingerprint Identification 

System (AFIS) search reliability. [24] 

Artifacts, anomalies, […] shall not 

significantly adversely impact supporting the 

intended applications. [25] 

Artifacts or anomalies […] shall not be 

significant enough to adversely impact support 

to […] Automated Fingerprint Identification 

System (AFIS) search reliability. [24] 

Fingerprint 

sharpness and 

detail rendition 

The sharpness and detail rendition […] shall be 

high enough to support the […] Automated 

Fingerprint Identification System (AFIS) 

search reliability. [24] 

The sharpness and detail rendition […] shall 

be high enough to support the intended 

applications. [25] 

The sharpness and detail rendition […] shall 

be high enough to support the […] Automated 

Fingerprint Identification System (AFIS) 

search reliability. [24] 

1 Actually in PIV IQS this requirement is given by setting the maximum noise standard deviation to 3.5. To make it comparable 

with the corresponding IAFIS IQS, here this value has been provided as a 𝑆𝑁𝑅 under the hypothesis of a 247 gray-level range (see 

[24]): 𝑆𝑁𝑅 = 247
3.5  =  70.6. 
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2.3 Test Approach 

 

In order to evaluate the effects of the various quality parameters on fingerprint 

recognition accuracy, a systematic experimentation has been carried out. Starting from a 

fingerprint database, for each quality parameter, the output of scanners compliant with 

gradually-relaxed requirements has been simulated by modifying the images with 

appropriate transformations. This section describes the test approach and introduces the 

notation that will be used in the rest of the chapter. 

Off-line performance evaluation of fingerprint recognition algorithms is based on a set 

of genuine and impostor recognition attempts [10]. In a genuine recognition attempt, 

two fingerprints of the same finger are compared, while in an impostor recognition 

attempt, two fingerprints of different fingers are compared. From the errors made by an 

algorithm in these recognition attempts, it is possible to calculate performance 

indicators that quantify its accuracy, such as the Equal Error Rate (EER) [26]. 

In each genuine/impostor attempt, the first image is supposed to have been acquired 

during an ―enrollment‖ stage and the second during a ―verification‖ stage. In general, 

the scanner used during enrollment may be different from the one used during 

verification; for this reason, in the following definitions, any test database DB is 

considered as made of two sets of images: 𝐷𝐵𝑒  (acquired during enrollment) and 𝐷𝐵𝑣 

(acquired during verification). For the original database 𝐷𝐵0 =   𝐷𝐵𝑒 
0,  𝐷𝐵𝑣 0 , 

which is supposed to have been acquired using an ―ideal‖ scanner,  𝐷𝐵𝑒 
0 and  𝐷𝐵𝑣 0 

simply contain the original images without any modification. 

For a given quality parameter 𝑄, let 𝐷𝐵𝑄
𝑗

=   𝐷𝐵𝑒 𝑄
𝑗

,  𝐷𝐵𝑣 𝑄
𝑗
  be a database that 

simulates enrollment and verification images acquired by two fingerprint scanners 

compliant with a given requirement 𝑅𝑄
𝑖  on 𝑄. Each image  𝐹𝑒 𝑄

𝑗
∈  𝐷𝐵𝑒 𝑄

𝑗
 is obtained 

from the corresponding original image  𝐹𝑒 
0 ∈  𝐷𝐵𝑒 

0 by applying a transformation 

𝑇𝑒𝑄 to  𝐹𝑒 
0 that simulates its acquisition through the scanner used for enrollment: 

 𝐹𝑒 𝑄
𝑗

= 𝑇𝑒𝑄  𝐹𝑒 
0, 𝑗 ; similarly, for each  𝐹𝑣 𝑄

𝑗
∈  𝐷𝐵𝑣 𝑄

𝑗
,  𝐹𝑣 𝑄

𝑗
= 𝑇𝑣𝑄  𝐹𝑣 0, 𝑗 , with 

 𝐹𝑣 0 ∈  𝐷𝐵𝑣 0. 

For each quality parameter 𝑄 considered, an ordered set of gradually-relaxed 

requirements  𝑅𝑄
𝑗

, 𝑗 = 1, … , 𝑀𝑄  has been established and a pair of transformations 
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 𝑇𝑒𝑄 , 𝑇𝑣𝑄  has been defined according to a medium or large-scale application scenario 

where the scanners used for enrollment and verification are not the same physical 

device. 

Given a set of recognition algorithms {𝐴𝑖 , 𝑖 = 1, … , 𝑛}, let 𝐸𝐸𝑅𝑖 𝐷𝐵0  be the EER of 

algorithm i on the original database, and 𝐸𝐸𝑅𝑖 𝐷𝐵𝑄
𝑗
   the EER of algorithm 𝐴𝑖  on 𝐷𝐵𝑄

𝑗
. 

The dependency between the requirements on a given quality parameter 𝑄 and the 

recognition accuracy has been measured by considering, for each algorithm 𝑖 and for 

each requirement RQ
j

, the relative EER difference: 

  

 

 𝜌𝑖 𝑄
𝑗

=
𝐸𝐸𝑅𝑖 DBQ

j
 − EERi DB0 

EERi DB0 
 (2.1) 

 

A positive value for  𝜌𝑖 𝑄
𝑗

 denotes a performance drop, whereas a negative value 

denotes a performance improvement. Although in this work the performance variations 

are based on the EER, similar results have been observed using other operating points, 

such as FMR1000. 

In the following, experimental results are reported by using box-plots, where descriptive 

statistics of the  𝜌𝑖 𝑄
𝑗

 values (i.e., how the different algorithms in the set behave for a 

given 𝑗) are shown for each RQ
j

; see Figure 2.5 for a general example. 

 

 

2.4 Experiments on a Single Parameter 

 

The FVC2006 DB2 [28] has been selected as DB0; it consists of 1680 fingerprints 

from 140 fingers (12 impressions per finger) of 50 subjects, acquired through a scanner 

with the following characteristics: 

 acquisition area: 𝑤 =  17.8𝑚𝑚,  =  25.0𝑚𝑚; 

 output resolution: 𝑅𝑂𝑅𝐼𝐺 = 569𝑝𝑝𝑖. 
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Figure 2.5 - An example of how the results are presented in the following section. The 

horizontal axis reports the various requirements  𝑅𝑄
𝑗

, 𝑗 = 1, … , 𝑀𝑄  and the vertical axis the 

relative EER difference (expressed as a percentage value). The box corresponding to each 𝑅𝑄
𝑗
 

shows descriptive statistics of the   𝜌𝑖 𝑄
𝑗

, 𝑖 = 1. . 𝑛  values. The median value is denoted by the 

line separating the two halves of the box; the mean values are marked with black points, which 

are connected by a line to better highlight their trend. 

 

The choice of using this database is motivated by the following reasons: 

 a sufficiently-large database acquired in a real-life scenario using an IAFIS IQS 

compliant scanner was not available; 

 even if a database had been collected with such a scanner, a sufficient number of 

state-of-the-art algorithms tuned to work on the images produced by that device 

would have not been available; 

 the FVC2006 DB2 was collected within the European project BioSec [28] in 

three different European countries, following a well-defined acquisition protocol 

[29] and is being made available to the scientific community; 

 although the scanner used to acquire that database (Biometrika Fx3000) is not 

IAFIS IQS certified, the performance of the best algorithms on FVC2006 DB2 

are extremely good (the best EER is just 0.021%): this means that the 

perturbations introduced by the scanner do not cause (or cause to a very limited 

extent) ―matchability‖ problems. 

The FVC2006 protocol [28], defines the following recognition attempts on the database: 
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 genuine recognition attempts: each fingerprint is compared against the 

remaining impressions of the same finger, but avoiding symmetric comparisons, 

thus totaling 
140×12×11

2
  =  9240 genuine comparisons; 

 impostor recognition attempts: the first impression of each finger is compared 

against the first one of the remaining fingers, but avoiding symmetric 

comparisons, thus totaling 
140×139

2
 =  9730 impostor comparisons. 

The following subsections describe the experiments performed for each quality 

parameter considered and report the results. In all the cases, the pair of transformations    

 𝑇𝑒𝑄 , 𝑇𝑣𝑄  has been defined considering a worst-case scenario for a medium or large-

scale application. For instance, for the Output Resolution parameter (see Subsection 

2.4.2), given a requirement of 𝑅𝑂 ± 2% for the resolution, the worst case is identified 

by a scanner with 𝑅𝑂 − 2% resolution used for enrollment and one with 𝑅𝑂 + 2% 

resolution for verification (or vice versa). 

 

2.4.1 Acquisition Area (𝐐 = 𝐀𝐫𝐞𝐚) 

 

To evaluate this quality parameter, an experiment has been carried out under the 

following hypotheses: 

 each requirement 𝑅𝐴𝑟𝑒𝑎
𝑗

 is given as a minimum acquisition area (in 

square millimeters); 

 the acquisition area of the scanners simulated has the same aspect ratio of 

that used to acquire the original images (about ¾, which is also similar to 

the aspect ratio between the minimum 𝑤 and  in the PIV IQS); 

 for each requirement 𝑅𝐴𝑟𝑒𝑎
𝑗

, a scanner with the minimum-allowed area is 

used for both enrollment and verification. 

The transformations are defined as follows: 

𝑇𝑒𝐴𝑟𝑒𝑎  𝐹0, 𝑗 = 𝑇𝑣𝐴𝑟𝑒𝑎  𝐹0, 𝑗 = 𝐶𝑟𝑜𝑝  𝐹0, 𝑤 𝑅𝐴𝑟𝑒𝑎
𝑗

𝑤 ⋅ 
,  𝑅𝐴𝑟𝑒𝑎

𝑗

𝑤 ⋅ 
  (2.2) 

where 𝐶𝑟𝑜𝑝 𝐹0, 𝑤′, ′  crops a 𝑤′ × ′ image from the center of image 𝐹0 (Figure 

2.14.b). 
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The set of requirements  𝑅𝐴𝑟𝑒𝑎
𝑗

  used in the experimentation is {352, 332, 291, 271, 

251, 231, 211, 191, 171, 151}; note that 𝑅𝐴𝑟𝑒𝑎
7  is analogous to the PIV IQS requirement 

for the acquisition area: in fact 12.8 𝑚𝑚 × 16.5 𝑚𝑚 =  211.2 𝑚𝑚2  ≈  211 𝑚𝑚2. 

The experimental results are reported in Figure 2.6. It can be observed that, on the 

average, there is no significant performance change for 𝑅𝐴𝑟𝑒𝑎
1 , a certain loss of accuracy 

from 𝑅𝐴𝑟𝑒𝑎
2  to 𝑅𝐴𝑟𝑒𝑎

4 , and a clear worsening trend starting from 𝑅𝐴𝑟𝑒𝑎
5  (251 𝑚𝑚2). The 

average performance drop for 𝑅𝐴𝑟𝑒𝑎
2  (corresponding to the PassDEÜV IQS requirement) 

is 12% while, the average performance drop for 𝑅𝐴𝑟𝑒𝑎
7  (corresponding to the PIV IQS 

requirement) is 73%. 

 

Figure 2.6 - Box-plot of the Acquisition area experiment; the first five boxes are expanded in 

the inner graph to better show their statistics. The horizontal axis reports the minimum 

acquisition area requirements (in square millimeters) and the vertical axis the relative EER 

difference (expressed as a percentage value). The requirement analogous to the PassDEÜV and 

PIV IQS are highlighted. 

 

2.4.2 Output Resolution (𝑸 = 𝑹𝒆𝒔) 

 

The experiment to evaluate the effect of imposing requirements on the scanner’s 

output resolution has been carried out under the following hypotheses: 

 each requirement 𝑅𝑅𝑒𝑠
𝑗

 is given as a maximum percentage variation from 

𝑅𝑂𝑅𝐼𝐺 ; 
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 for each requirement 𝑅𝑅𝑒𝑠
𝑗

, a scanner with the minimum-allowed 

resolution (𝑅𝑂𝑅𝐼𝐺 − 𝑅𝑅𝑒𝑠
𝑗

%) is used for enrollment, and one with the 

maximum-allowed resolution (𝑅𝑂𝑅𝐼𝐺 + 𝑅𝑅𝑒𝑠
𝑗

%) for verification. 

The transformations are defined as follows: 

𝑇𝑒𝑅𝑒𝑠  𝐹
0, 𝑗 = 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒 𝐹0, −𝑅𝑅𝑒𝑠

𝑗
  (2.3) 

𝑇𝑣𝑅𝑒𝑠  𝐹
0, 𝑗 = 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒 𝐹0, +𝑅𝑅𝑒𝑠

𝑗
  (2.4) 

where 𝑅𝑒𝑠𝑎𝑚𝑝𝑙𝑒 𝐹0, Δ𝑟  resamples 𝐹0 through bilinear interpolation, to simulate an 

image acquired at resolution 𝑅𝑂𝑅𝐼𝐺 + Δ𝑟% (Figure 2.14.c). 

The set of requirements  𝑅𝑅𝑒𝑠
𝑗

  used in the experimentation is {0.5%, 1.0%, 1.5%, 2.0%, 

2.5%, 3.0%, 3.5%, 4.0%, 4.5%, 5.0%}; note that 𝑅𝑅𝑒𝑠
2  and 𝑅𝑅𝑒𝑠

4  are the 

IAFIS/PassDEÜV and PIV IQS requirements for the output resolution, respectively. 

The experimental results are reported in Figure 2.7. On the average there is no 

significant loss of accuracy for the first three requirements; then the average 

performance drop noticeably increases from 20% for 𝑅𝑅𝑒𝑠
4  (PIV IQS) to 258% for 𝑅𝑅𝑒𝑠

10 . 

 

 

Figure 2.7 - Box-plot of the Output resolution experiment; the first five boxes are expanded in 

the inner graph to better show their statistics. The horizontal axis reports the requirements on 

the maximum percentage variation from the nominal output resolution (𝑅𝑂𝑅𝐼𝐺 ); the vertical axis 

reports the relative EER difference (expressed as a percentage value). The requirements of the 

IAFIS/PassDEÜV (±1%) and PIV (±2%) IQS are highlighted. 
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2.4.3 Geometric Accuracy (𝑸 = 𝑮𝑨𝒄𝒄) 

 

This experiment has been carried out under the following hypotheses: 

 each requirement 𝑅𝐺𝐴𝑐𝑐
𝑗

 is given as the maximum relative difference 

between the actual distance 𝑋 between two points and the distance 𝑌 

between those same two points as measured on the output scanned 

image; 

 for each requirement 𝑅𝐺𝐴𝑐𝑐
𝑗

, an ―ideal‖ scanner (with negligible 

geometric distortion) is used for enrollment, and a scanner with the 

maximum allowed geometric distortion 𝑅𝐺𝐴𝑐𝑐
𝑗

 is used for verification; 

 the scanners used for verification are characterized by a barrel distortion 

[30] (which is one of the most common types of lens distortions). 

The transformations are defined as follows: 

 

𝑇𝑒𝐺𝐴𝑐𝑐  𝐹0, 𝑗 = 𝐹0 (2.5) 

𝑇𝑣𝐺𝐴𝑐𝑐  𝐹0, 𝑗 = 𝐵𝑎𝑟𝑟𝑒𝑙𝐷𝑖𝑠𝑡 𝐹0, 𝑅𝐺𝐴𝑐𝑐
𝑗

  (2.6) 

 

where 𝐵𝑎𝑟𝑟𝑒𝑙𝐷𝑖𝑠𝑡 𝐹0, 𝑑  applies to 𝐹0 a barrel distortion whose parameters are 

adjusted to impose a maximum relative distortion 𝑑 while preserving the image size 

(see Figure 2.8 and Figure 2.14.d). The approach described in [31] has been adopted to 

implement this transformation function. 

The set of requirements  𝑅𝐺𝐴𝑐𝑐
𝑗

  used in the experimentation is {1.0%, 1.5%, 2.0%, 

2.5%, 3.0%, 4.5%, 6.0%, 7.5%, 9.0%, 12.0%}. It is worth noting that for a scanner 

characterized by this type of barrel distortion: 

 meeting requirement 𝑅𝐺𝐴𝑐𝑐
2  is necessary and sufficient to be compliant to the 

geometric accuracy requirements of the IAFIS 500ppi and PassDEÜV IQS 

(while 𝑅𝐺𝐴𝑐𝑐
3  is not enough); 

 meeting requirement 𝑅𝐺𝐴𝑐𝑐
4  is necessary and sufficient to be compliant to the 

geometric accuracy requirements of the PIV IQS (while 𝑅𝐺𝐴𝑐𝑐
5  is not enough). 

The two conditions above can be empirically verified by applying the corresponding 

transformations to digital images of the bar targets adopted in [24]. 
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The experimental results are reported in Figure 2.9. It can be observed that, on the 

average, there is no significant performance change for the first four requirements 

(which include the three 𝑅𝐺𝐴𝑐𝑐
𝑗

 corresponding to the IAFIS, PassDEÜV and PIV IQS). 

Starting from 𝑅𝐺𝐴𝑐𝑐
5 , the performance drop shows a clear increasing trend. 

 

 

Figure 2.8 - Examples of the 𝐵𝑎𝑟𝑟𝑒𝑙𝐷𝑖𝑠𝑡 𝑇, 𝑑  transformation applied to a square mesh grid 𝑇. 

From left to right: original image (𝑇), result with 𝑑 = 5%, and result with 𝑑 = 10%. 

 

 

Figure 2.9 - Box-plot of the Geometric accuracy experiment; the first five boxes are expanded in 

the inner graph to better show their statistics. The horizontal axis reports the requirements on 

the maximum allowed relative distortion; the vertical axis reports the relative EER difference 

(expressed as a percentage value). The requirements corresponding to the IAFIS/ PassDEÜV 

and PIV IQS are highlighted. 
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2.4.4 Spatial Frequency Response (𝑸 = 𝑺𝑭𝑹) 

 

A simple technique to simulate the acquisition of images through a scanner with 

a given 𝑆𝐹𝑅 is to apply a low-pass filter 𝐻 𝑓  in the Fourier domain, whose input 

parameter 𝑓 is the frequency (measured in cycles per millimeter). This operation 

attenuates the amplitude at each frequency 𝑓 by a factor of 𝐻 𝑓 : if it were applied to an 

image acquired through an ―ideal‖ scanner (i.e. 𝑀𝑇𝐹 = 1 at every frequency), the 

resulting image would correspond to that obtained from a scanner with 𝑀𝑇𝐹 𝑓 =

𝐻 𝑓  for each 𝑓. 

A Butterworth-like function [32] has been selected for the low-pass filtering: 

 

𝐻𝑓0

𝛾  𝑓 =
1

1 +  
𝑓
𝑓0

 
𝛾  

(2.7) 

 

where parameter 𝛾 has been fixed to the value 1.65, which minimizing the mean-square-

error of the difference between 𝐻𝑓0

𝛾  𝑓  and 𝑀𝑇𝐹𝑚𝑖𝑛 (𝑓) for the IAFIS (500ppi) and PIV 

IQS (see Figure 2.4). 

The experiment has been carried out under the following hypotheses: 

 each requirement 𝑅𝑆𝐹𝑅
𝑗

 is given as a value for parameter 𝑓0, hence, the minimum 

𝑀𝑇𝐹 value for each frequency f is simply 𝐻
𝑅𝑆𝐹𝑅

𝑗
1.65  𝑓 ; 

 for each requirement 𝑅𝑆𝐹𝑅
𝑗

, a scanner with exactly the minimum-allowed 𝑀𝑇𝐹 at 

each frequency is used for both enrollment and verification. 

The transformations are defined as follows: 

 

𝑇𝑒𝑆𝐹𝑅 𝐹0, 𝑗 = 𝑇𝑣𝑆𝐹𝑅 𝐹0, 𝑗 = 𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝐹𝑇  𝐹0, 𝐻
𝑅𝑆𝐹𝑅

𝑗
1.65   (2.8) 

 

where 𝐹𝑖𝑙𝑡𝑒𝑟𝐹𝐹𝑇 𝐹0, 𝐻  performs the low-pass filtering of image 𝐹0 with filter 𝐻 in 

the Fourier domain (Figure 2.14.e). 

The set of requirements  𝑅𝑆𝐹𝑅
𝑗

  used in the experimentation is {15, 10, 7, 5, 4, 3, 2.5, 2, 

1.5}; Figure 2.10 shows the minimum 𝑀𝑇𝐹 curves corresponding to each 𝑅𝑆𝐹𝑅
𝑗
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requirement and the curves corresponding to the IAFIS (500ppi), PassDEÜV and PIV 

IQS (see also Figure 2.4). 

The experimental results are reported in Figure 2.11. It can be observed that, on the 

average, there is a small performance improvement for the first five requirements; then 

the average performance drop noticeably increases from 16% for 𝑅𝑆𝐹𝑅
6  to 548% for 

𝑅𝑆𝐹𝑅
9 . The very high performance drop for 𝑅𝑆𝐹𝑅

9  is mainly due to an outlier (a single 

algorithm with an exceptionally large loss of performance), anyway the increasing trend 

is confirmed by the median value (172%). The small performance improvement for the 

first requirements is probably due to the low-pass filtering, which, by removing high 

frequencies (and therefore cleaning small noise artifacts), makes the fingerprint images 

easier to be processed by automated algorithms (although they appear less focused to 

the human eye). 

 

 

 

Figure 2.10 - Solid curves: minimum 𝑀𝑇𝐹 values for the various 𝑅𝑆𝐹𝑅
𝑗

 requirements; dashed 

curves: minimum 𝑀𝑇𝐹 values for the IAFIS (500ppi) and PIV IQS. PassDEÜV IQS curve is 

the same of IAFIS (500ppi) IQS. 
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Figure 2.11 - Box-plot of the SFR experiment; the first five boxes are expanded in the inner 

graph to better show their statistics. The horizontal axis reports the requirements, given as 

values for the f0 parameter and the vertical axis reports the relative EER difference (expressed as 

a percentage value). The requirements corresponding to the IAFIS/PassDEÜV and PIV IQS are 

highlighted. 

 

2.4.5 Signal-to-Noise Ratio (𝑸 = 𝑺𝑵𝑹) 

 

Let 𝑔 𝑙𝑖𝑔𝑡  and 𝑔 𝑑𝑎𝑟𝑘  be the average gray level for the light and dark target, 

respectively (see [24]); the 𝑆𝑁𝑅 can be expressed as: 

 

𝑆𝑁𝑅 =
 𝑔 𝑙𝑖𝑔𝑡 − 𝑔 𝑑𝑎𝑟𝑘  

𝜍
=

Δ𝑔

𝜍
 (2.9) 

 

where 𝜍 is the standard deviation of the gray-levels in the image. 

Assuming an image acquired through an ―ideal‖ scanner with negligible noise, a 

practical way to simulate acquisition by a device with 𝑆𝑁𝑅 = 𝐾 is to modify the gray 

level 𝑔 of each pixel as follows: 

 

𝑔′ = 𝑚𝑎𝑥  𝑚𝑖𝑛  𝑔 + 𝑁  0,
Δ𝑔

𝐾
 , 255 , 0  (2.10) 
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where the function 𝑁 𝑥 , 𝜍  generates an integer random number according to a normal 

distribution with mean 𝑥  and standard deviation 𝜍. 

The 𝑆𝑁𝑅 experiment has been carried out under the following hypotheses: 

 each requirement 𝑅𝑆𝑁𝑅
𝑗

 is given as a minimum 𝑆𝑁𝑅 for the scanner; 

 the scanner has a full 256 range of gray levels, hence, assuming a 4 gray-level 

offset at each side (see [24]), Δ𝑔 = 247; 

 for each requirement 𝑅𝑆𝑁𝑅
𝑗

, a scanner with the minimum-allowed 𝑆𝑁𝑅 is used 

for both enrollment and verification. 

The transformations are defined as follows: 

 

𝑇𝑒𝑆𝑁𝑅 𝐹0, 𝑗 = 𝑇𝑣𝑆𝑁𝑅 𝐹0, 𝑗 = 𝐴𝑑𝑑𝑁𝑜𝑖𝑠𝑒 𝐹0, 𝑅𝑆𝑁𝑅
𝑗

  (2.11) 

 

where 𝐴𝑑𝑑𝑁𝑜𝑖𝑠𝑒 𝐹0, 𝐾  modifies each pixel in 𝐹0 according to equation (2.10), see 

Figure 2.14.f. 

The set of requirements  𝑅𝑆𝑁𝑅
𝑗

  used in the experimentation is {150, 125, 115, 100, 85, 

70, 55, 40, 25, 15}; note that 𝑅𝑆𝑁𝑅
2  is the IAFIS/PassDEÜV IQS requirement and 𝑅𝑆𝑁𝑅

6  

is close to the PIV IQS requirement. 

The experimental results are reported in Figure 2.12. It can be observed that, on the 

average, there is no significant performance change for all the requirements except 

𝑅𝑆𝑁𝑅
10 , where the average performance drop is 52%. Actually, a small performance 

improvement can be noted for the second, third and fourth degradations. To explain this 

strange behavior (i.e., adding a small amount of noise seems to improve the overall 

accuracy) genuine and impostors distributions and some cases of genuine and impostor 

matches had been analyzed. Although a precise study is beyond the scope of this work, 

from this examination it is clear that adding a limited amount of random noise tends to 

leave almost all the genuine matching scores unaltered, while reduces some high 

impostor matching scores that were probably due to chance. 
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Figure 2.12 - Box-plot of the 𝑆𝑁𝑅 experiment; the first five boxes are expanded in the inner 

graph to better show their statistics. The horizontal axis reports the requirements on the 

minimum 𝑆𝑁𝑅 and the vertical axis reports the relative EER difference (expressed as a 

percentage value). The requirements corresponding to the IAFIS/PassDEÜV (𝑆𝑁𝑅 ≥ 125) and 

PIV (𝑆𝑁𝑅 ≥ 70) IQS are highlighted. 

 

 

2.4.6 Fingerprint Gray Range (𝑸 = 𝑮𝑹𝒂𝒏𝒈𝒆) 

 

The experiment to evaluate the effect of imposing requirements on the scanner’s 

gray range has been carried out under the following hypotheses: 

 each requirement 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
𝑗

 is given as a minimum 𝐷𝑅 (see Section 2.2) 

for the fingerprints acquired by the scanner; 

 for each requirement 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
𝑗

, a scanner with the minimum-allowed 𝐷𝑅 

is used for both enrollment and verification. 

The transformations are defined as follows: 

 

𝑇𝑒𝐺𝑅𝑎𝑛𝑔𝑒  𝐹0, 𝑗 = 𝑇𝑣𝐺𝑅𝑎𝑛𝑔𝑒  𝐹0, 𝑗 = 𝐷𝑒𝑐𝐺𝐿𝑒𝑣𝑒𝑙𝑠 𝐹0, 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
𝑗

  (2.12) 

 

where 𝐷𝑒𝑐𝐺𝐿𝑒𝑣𝑒𝑙𝑠 𝐹0, 𝑚  applies the Median Cut algorithm [33] to decrease the 
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number of gray levels in 𝐹0  
to 𝑚 (Figure 2.14.g). 

The set of requirements  𝑅𝐺𝑅𝑎𝑛𝑔𝑒
𝑗

  used in the experimentation is {200, 175, 150, 128, 

64, 32, 16, 8, 4, 2}; note that 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
1  is the 𝐷𝑅 that the IAFIS/PassDEÜV IQS requires 

for at least 80% of the fingerprints, 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
3  is the 𝐷𝑅 that the PIV IQS requires for at 

least 80% of the fingerprints, and 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
4  is the 𝐷𝑅 that the IAFIS/PassDEÜV IQS 

requires for at least 99% of the fingerprints. 

The experimental results are reported in Figure 2.13. On the average there is no 

significant loss of accuracy for the first six requirements; then the average performance 

drop noticeably increases from 23% for 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
7  to 524% for

 
𝑅𝐺𝑅𝑎𝑛𝑔𝑒

10 . 

 

 

 

Figure 2.13 - Box-plot of the Fingerprint gray range experiment; the first five boxes are 

expanded in the inner graph to better show their statistics. The horizontal axis reports the 

requirements on the minimum number of different gray levels (𝐷𝑅) and the vertical axis reports 

the relative EER difference (expressed as a percentage value). The requirements corresponding 

to the IAFIS/PassDEÜV (𝐷𝑅 ≥ 200) and PIV (𝐷𝑅 ≥ 150) IQS are highlighted. 
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Figure 2.14 - An example of application of each transformation. a) Original image; b) Image 

cropped to simulate the minimum acquisition area for 𝑅𝐴𝑟𝑒𝑎
7  (PIV IQS); c) Image resampled to 

simulate the maximum allowed resolution for 𝑅𝑅𝑒𝑠
10  (the 250 pixel segment highlighted in the 

original image is here 262 pixel); d) Maximum barrel distortion allowed by 𝑅𝐺𝐴𝑐𝑐
10  (the 250 pixel 

segment highlighted in the original image is here 272 pixel); e) Image obtained by applying the 

Butterworth-like filter to simulate the minimum MTF values for 𝑅𝑆𝐹𝑅
9 ; f) Noise added to 

simulate the minimum SNR for 𝑅𝑆𝑁𝑅
10 ; g) Number of gray levels reduced to the minimum 

number required by 𝑅𝐺𝑅𝑎𝑛𝑔𝑒
8 . 

 

2.4.7 Result Analysis 

 

From the analysis of the previous graphs, the following observations can be made. 

 All the box-plots show almost no changes in the average and median 

performance variation for the first three/four requirements; this means that a 

small degradation of the database images does not cause significant performance 

drops: a substantial degradation is needed to observe significant changes. The 

initial flatness of all the trends confirms that the FVC2006 DB2 used in our 

experiments is not biasing the results; in fact, even if the results partially depend 

on the specific scanner used, similar results would be obtained with other 

scanners. In any case, the proposed methodology does not depend on the 
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particular scanner choice and it will be possible to repeat these experiments with 

other scanners in the future, including 1000ppi optical devices. 

 The quality parameter that mostly affects the fingerprint matching performance 

is the acquisition area (Subsection 2.4.1): in fact, the same performance drop 

caused by a slight reduction of the area can be obtained only with a strong 

worsening of any of the other quality parameters. For instance, simulating a 

scanner with a 231 𝑚𝑚2 area (larger than most single-finger commercial 

scanners and than the PIV IQS minimum requirement), an average performance 

drop of 52% has been observed; to obtain a similar result by modifying the 

Geometric accuracy parameter (Subsection 2.4.3), it would be necessary to 

allow a maximum distortion of 7.5% (about three times that allowed by the PIV 

IQS). 

 The 𝑆𝑁𝑅 and Fingerprint gray range quality parameters (Subsections 2.4.5 and 

2.4.6) do not seem to affect much the performance: only starting from very 

strong degradations (𝑆𝑁𝑅 < 25, 𝐷𝑅 < 32) it is possible to observe a significant 

performance decrease. According to our experience, these results can be 

explained by considering that the type of perturbations that negatively affect the 

matching accuracy are those that modify the ridge pattern topology (e.g. 

merging, splitting or deforming ridge lines and valleys). The scanner noise 

quantified by the 𝑆𝑁𝑅 parameter typically does not alter the ridge line structure 

and can be easily removed by smoothing filters in spite of a small degradation of 

the 𝑆𝐹𝑅 (which does not seem to be a critical parameter as well, see Subsection 

2.4.4). Similarly, the 𝐷𝑅 does not affect the accuracy since most matching 

algorithms tend to quantize (or even binarize) the image, hence only a drastic 

reduction of the gray range (able to change the pattern topology) may have a 

negative impact on the performance. 

How should the results presented in these sections be related to the IAFIS, PassDEÜV 

and PIV IQS specifications and requirements? How may these results be exploited in 

practice to help choosing fingerprint scanners for a given application? The fundamental 

issue is whether the application might require human examination of fingerprint images 

or not (i.e., all the fingerprint processing and comparison steps are automated): 

 the former case is typical of IAFIS and other large scale systems where the 
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images may be examined by forensic experts. In such situations, it is clearly 

very important to define the scanner quality as fidelity to the original signal and 

follow the IAFIS IQS requirements. In fact, differently from state-of-the-art 

matching algorithms, human experts’ fingerprint comparison heavily relies on 

very fine details such as pores, incipient ridges, etc. for which the fidelity to the 

original signal is very important [35]; 

 the latter case is typical of totally-automated biometric systems, where: i) the 

images are stored but used only for automated comparisons, or ii) only 

fingerprint templates are stored. Here the definition of ―operational quality‖ 

appears to be more important than the absolute fidelity to the original signal 

because the choice of a particular scanner should be driven by the desired 

performance. 

Figure 2.15 compares the results obtained at the minimum IAFIS, PassDEÜV and PIV 

IQS requirements for each quality parameter. The performance variation for the Area 

parameter at the minimum IAFIS requirement is not available, but it can be assumed to 

be negligible (IAFIS compliant scanners are always able to acquire a full fingerprint). 

From the two graphs it can be observed that, at the IAFIS IQS minimum requirements, 

no quality parameter caused a sensible performance drop: this means that, for scanners 

compliant with the IAFIS IQS, the two definitions of quality (―fidelity to the signal‖ and 

―operational‖) are not in contrast and such devices are able to guarantee optimal results 

under both points of view; the PassDEÜV IQS differs from the IAFIS IQS only for the 

acquisition area where the performance drop is small (about 12%). Different is the case 

of the PIV IQS, where the requirements have been relaxed to deal with applications for 

which the cost and size of IAFIS IQS compliant scanners would not be feasible. The 

two graphs in Figure 2.15 highlight how the PIV requirement on the acquisition area 

may cause a large performance drop in automated systems with respect to scanners of 

larger area. A significant (but smaller) loss of performance may also be caused by the 

requirements on the output resolution, while the requirements imposed on other quality 

parameters (see the corresponding graphs in Section 2.4) do not seem to bring real 

advantages in spite of a potentially higher device manufacturing cost. 
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Figure 2.15 - Average (left graph) and median (right graph) performance variation for each 

quality parameter 𝑄 at the requirement 𝑅𝑄
𝑗
 corresponding to the IAFIS, PassDEÜV and PIV 

requirements. 

 

2.5 New Image Quality Specifications for Single Finger Scanners 

 

In this section, three new specifications, for single-finger scanners targeted to 

different types of applications, are presented and their potential effects on fingerprint 

recognition accuracy are compared and analyzed with PIV [22] and PassDEÜV [23] 

image quality specifications for single-finger scanners. The three new set of 

specifications are currently being evaluated by the Italian National Center for ICT in the 

Public Administration [36] (CNIPA) for inclusion within the guidelines for the Italian 

public administrations involved in biometric projects. 

2.5.1 Proposed IQS 

 

Starting from the obtained results reported in Section 2.4, in cooperation with 

CNIPA, three new set of IQS, for single-finger scanners to be used in different 

applications, are presented. In particular: 

 CNIPA-A is conceived for: i) enrolment in large-scale applications where device 

interoperability is crucial (e.g. passports, national identity card); ii) identity 

verification in large-scale applications where the enrolment has been performed 

with an IAFIS IQS or CNIPA-A complaint scanners (e.g. passport or visa 

verification); 
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 CNIPA-B is conceived for: i) enrolment and verification in medium-scale 

projects (e.g. intra-organization projects); ii) identity verification in large-scale 

applications where the enrolment has been performed with CNIPA-A scanners 

(e.g. national identity card verification); 

 CNIPA-C is conceived for enrolment and verification in small-scale 

applications, where typically users are authenticated on the same device (e.g. 

logical and physical security in small organizations).  

The three new IQS are mainly based on the following quality parameters: 

 Acquisition area: capture area of the scanner (𝑤). 

 Native resolution: the scanner’s true internal resolution (𝑅𝑁) in pixels per inch 

(ppi). 

 Output resolution: the resolution of the scanner’s final output fingerprint image 

in ppi. 

 Gray-level quantization: number of gray-levels in the final output fingerprint 

image. 

 Geometric accuracy: geometric fidelity of the scanner, measured as the absolute 

value of the difference 𝐷, between the actual distance 𝑋 between two points on a 

target and the distance 𝑌 between those same two points as measured on the 

output scanned image of that target; this parameter is evaluated by measuring 

the Relative difference (𝐷𝑅𝑒𝑙 =
𝐷

𝑋
). 

 Spatial frequency response: the new specifications assess this factor by dividing 

the acquisition area in 0.25”0.25” regions and measuring, for each region, the 

Top Sharpening Index (𝑇𝑆𝐼), see Section 2.6 for more details. 

 Signal-to-noise ratio: the signal is defined as the difference between the average 

output gray-levels obtained from acquisition of a uniform light gray and a 

uniform dark gray target, measuring the average values over independent 

0.25”0.25” areas; the noise is defined as the standard deviation of the gray-

levels in those areas. 

 Fingerprint gray range: given a set of scanned fingerprint images, the dynamic 

range (𝐷𝑅) of each image is defined as the total number of gray levels that are 

present in the image. 

Table 2.2 reports, for each of the above quality parameters, the requirements that a 
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scanner has to meet in order to be compliant with the three proposed specifications. 

 

Table 2.2 - A comparison of CNIPA-A/B/C requirements for the main quality parameters 

Parameter 

Requirement 

 

IQS A IQS B IQS C 

Acquisition area 𝑤 ≥  25.4𝑚𝑚  ≥  25.4𝑚𝑚 𝑤 ≥  15.0𝑚𝑚  ≥  20.0𝑚𝑚 𝑤 ≥  12.8𝑚𝑚  ≥  16.5𝑚𝑚 

Native resolution 𝑅𝑁 ≥  500𝑝𝑝𝑖  

Output resolution 𝑅𝑁  ±  1%  𝑅𝑁  ±  1.5%  𝑅𝑁  ±  2%  

Gray-level 

quantization 
256 gray-levels (8 bpp) 

Geometric accuracy In all the tests: 𝐷𝑅𝑒𝑙 ≤ 1.5% In all the tests: 𝐷𝑅𝑒𝑙 ≤ 2.0% In all the tests: 𝐷𝑅𝑒𝑙 ≤ 2.5% 

Spatial frequency 

response 
For each region: 𝑇𝑆𝐼 ≥ 0.20 For each region: 𝑇𝑆𝐼 ≥ 0.15 For each region: 𝑇𝑆𝐼 ≥ 0.12 

Signal-to-noise
1
 𝑆𝑁𝑅 ≥ 70.6  𝑆𝑁𝑅 ≥ 49.4  𝑆𝑁𝑅 ≥ 30.9  

Fingerprint  

gray range 

For 10% of the images: 

𝐷𝑅 ≥ 150 

For 10% of the images: 

𝐷𝑅 ≥ 140 

For 10% of the images: 

𝐷𝑅 ≥ 130 

1 Actually in CNIPA this requirement is given by setting the maximum noise standard deviation. To make it comparable with the 

corresponding PassDEÜV IQS, here this value has been provided as a 𝑆𝑁𝑅 under the hypothesis of a 247 gray-level range (see [23] 

[20]): 𝑆𝑁𝑅 = 247
𝜍  . 

 

2.5.2 Impact of the IQS on the Recognition Accuracy 

 

In order to evaluate the impact on fingerprint recognition accuracy of the IQS 

described in the previous subsection, a systematic experimentation has been carried out. 

Following the testing methodology introduced in Section 2.3 and using the same test 

database, fingerprint images acquired by hypothetical scanners compliant with each IQS 

have been simulated. To this purpose, the transformations described in Section 2.4 have 

been sequentially applied to the original fingerprint images according to the worst-case 

scenario hypothesized in Table 2.3 (see Figure 2.16). 
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Figure 2.16 – Fingerprint image acquired by simulating scanners compliant with each IQS. 

 

Table 2.3 - The table reports, for each quality parameter, the characteristic of the scanners 

hypothesized for enrolment and verification. In fact, in a typical large-scale application, the 

scanner used during enrolment may be different from those used during verification. Note that 

―different‖ does not necessarily imply a distinct model/vendor: in fact, two scanners of the same 

model may produce different output images. For instance if a certain scanner model is 

compliant to a 500ppi±1% output resolution specification, one of such devices may work at 

505ppi and another at 495ppi. 

Parameter Enrolment scanner Verification scanner 

Acquisition area The minimum-allowed The minimum-allowed 

Output resolution 
The minimum-allowed 

(𝑅𝑒𝑠𝑂𝑅 − 𝑅𝑅𝑒𝑠 %) 

The maximum-allowed  

(𝑅𝑒𝑠𝑂𝑅 + 𝑅𝑅𝑒𝑠 %) 

Geometric accuracy Negligible The maximum-allowed 

Spatial frequency response The minimum-allowed The minimum-allowed 

Signal-to-noise ratio The minimum-allowed The minimum-allowed 

Fingerprint gray range The minimum-allowed The minimum-allowed 

 

 

The outcome of this analysis is an estimation of the loss of accuracy that scanners 

compliant with each specification may cause with respect to the performance that would 

be obtained using ―ideal‖ scanners (i.e. devices with negligible perturbations). The loss 

of accuracy is quantified by the relative EER difference between the two cases, 

expressed as a percentage value (see Section 2.3); for instance, if the relative EER 

difference is 100%, it means that the EER obtained by the simulated scanners is twice 

the EER obtained by the ideal scanners. All the experiments have been carried out using 

ten state-of-the-art fingerprint recognition algorithms. Figure 2.17 reports a box-plot for 

each specification: each box-plot shows descriptive statistics about the relative EER 

difference of the ten algorithms. 

 

ORIGINAL
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Figure 2.17 - A box-plot for each specification. Each box-plot graphically shows descriptive 

statistics of a set of data: the top and bottom of the vertical line denotes the largest and smallest 

observation, respectively; the rectangle contains 50% of the observations (from the first to the 

third quartile) and highlights the median (second quartile); finally the mean of all the 

observations is marked with a black circle. 

 

In order to better understand the results summarized in Figure 2.17, it is useful to 

compare the five IQS as shown in Table 2.4, where the ―strictness‖ of the various 

quality parameters with respect to the FBI IAFIS IQS [20] is highlighted. The most 

―tolerant‖ specification is CNIPA-C, which has the least demanding requirements for all 

the parameters: as it was reasonable to expect, this specification can cause the largest 

performance drop (182% on the average). Less tolerant but still not very strict are PIV 

and CNIPA-B (both with three ―L‖ and three ―M‖ requirements); however the loss of 

performance that can be caused by them is definitely different: on the average 156% and 

44%, respectively. This means that the impact of the various quality parameters on the 

recognition accuracy is not uniform: the first three parameters in Table 2.4 are more 

critical than the last three ones. The two most demanding specifications (PassDEÜV 

and CNIPA-A) cause definitely smaller performance drops (on the average 20% and 

18%, respectively); Table 2.4 shows that CNIPA-A has the most strict requirement for 

the acquisition area, while PassDEÜV for spatial frequency response, signal-to-noise 

ratio and fingerprint gray range. CNIPA-A IQS produces the smallest loss of 
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performance, mainly due to the larger acquisition area that is the most critical 

parameter, as proved in Subsection 2.4.7. 

 

 

Table 2.4 - For each of the quality parameters a label in {―L: Low‖, ―M: Medium‖, ―H: High‖} 

is used to characterize the level of ―strictness‖ of the requirement in the specifications. ―H‖ is 

used when the constraint is as ―strict‖ as in the FBI IAFIS-IQS [20]; ―M‖ and ―L‖ are used 

when the specification is moderately or significantly relaxed, respectively, with respect to the 

corresponding FBI IAFIS-IQS. 

Parameter 
Level of “strictness” of the requirements 

PIV IQS PassDEÜV CNIPA-A CNIPA-B CNIPA-C 

Acquisition area L M H M L 

Output resolution accuracy L H H M L 

Geometric accuracy
1
 L H H M L 

Spatial frequency response
2
 M H M L L 

Signal-to-noise ratio M H M L L 

Fingerprint gray range M H M L L 
1 CNIPA-A/B/C IQS set requirements on a slightly different measurement of geometric accuracy; however it can shown that PIV 

IQS is comparable to CNIPA-C requirement and PassDEÜV requirement (the same of the IAFIS IQS) is comparable to CNIPA-A 

requirement (see Subsection 2.4.3). 
2
 Although CNIPA-A/B/C IQS on spatial frequency response are based on a different measure (see Section 2.6), according to our 

internal tests, PIV-IQS requirement is close to CNIPA-A. 
 

 

2.6 Estimating Image Focusing in Fingerprint Scanners 

 

The IQS [20], [22] and [23] provide clear specifications for the certification of 

fingerprint scanners for forensic and civil applications; unfortunately, the related testing 

procedures ([24] [25]) to certify these devices are rather complex and requires specific 

expensive targets. 

The need for simple and practical techniques to evaluate the quality of fingerprint 

scanners is the main motivation of the work described in this section. Several factors 

have to be considered for a comprehensive evaluation, such as the deviation with 

respect to the nominal resolution, the geometric accuracy, the signal to noise ratio, etc. 

This section addresses the problem of how to efficiently evaluate the ability of the 

scanners to clearly focus the fingerprint. 

A fingerprint image could be out of focus for two main reasons: i) the device internal 

sampling resolution is not sufficient to transfer the fine details of the pattern (i.e. 
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Nyquist sampling theorem); ii) some components of the device (e.g. a lens) produce a 

certain amount of blurring because of technology-specific reasons. 

According to the testing procedures described in [24] and [25] the image focusing can 

be indirectly estimated through the MTF or CTF (as described in Subsection 2.6.1), but 

these require expensive calibrated targets and complex testing procedures (e.g. it is 

sometime necessary to open the device or remove some parts to properly image the 

target).  

An alternative to MTF/CTF is using the Image Quality Measure (IQM) proposed in 

[36]. IQM is a good quality measure and demonstrated to be highly correlated to the 

MTF. On the other hand it has been developed for the evaluation of generic digital 

images and therefore it takes into account several factors, some of which are not directly 

applicable to the analysis of fingerprint images (e.g. the directional scale factor). 

In this section a novel index (named TSI) [6] [7], to simply evaluate fingerprint image 

focusing, is proposed. The method is based on the measurement of the steepness of the 

ridge/valley transitions of the fingerprint impressions and does not require any specific 

setup.   

 

 

2.6.1 MTF and CTF Measures 

 

The modulation transfer function (MTF) denotes the ability of an imaging 

system to transfer the object contrast (i.e. the signal difference between dark and light 

areas) to the captured image.  

The system MTF can be computed from an impulse function input such as a point 

source of light, a narrow line, or a sharp edge. It can also be computed from non-

impulse inputs such as a sine wave, square wave, or even from a random pattern. The 

evaluation of the spatial frequency response (SFR) for fingerprint scanners, according to 

the FBI/NIST recommendations, requires the use of continuous tone sine wave targets. 

A typical target, including sine waves of increasing frequencies is shown in Figure 2.18. 
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Figure 2.18 - Example of a sine wave target used to calculate MTF. 

 

The MTF for a given frequency is defined as: 

 

𝑀𝑇𝐹 =
𝑝𝑒𝑎𝑘 𝑖𝑚𝑎𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑡𝑎𝑟𝑔𝑒𝑡 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (2.13) 

 

The target modulation is a value provided by the target manufacturer, while the image 

modulation is computed as: 

 

𝑝𝑒𝑎𝑘 𝑖𝑚𝑎𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =
𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 + 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 (2.14) 

 

where the maximum and minimum values correspond respectively to the gray level 

value of the peak and adjacent valley in each sine wave period. 

If the scanner cannot obtain adequate tonal response from this kind of target, a bi-tonal 

bar target shall be used to measure the SFR, denoted as Contrast Transfer Function 

(CTF) measurement. In this case the modulations are determined in image space, 

normalized by the image modulation at zero frequency . The scanner CTF at each 

frequency is then defined as: 

 

𝐶𝑇𝐹 =
𝑝𝑒𝑎𝑘 𝑖𝑚𝑎𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛

𝑧𝑒𝑟𝑜 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑖𝑚𝑎𝑔𝑒 𝑚𝑜𝑑𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 (2.15) 

 



 

Chapter 2: Fingerprint Acquisition Sensors and its Quality 

55 

 

2.6.2 IQM 

 

Image Quality Measure (IQM) has been proposed in [36], based on the digital 

image power spectrum of arbitrary scenes. This measure, differently from MTF, does 

not require imaging specific targets. IQM is derived from the normalized 2D image 

power spectrum, based on the assumption that the equational form of the imaging 

system input scene power spectrum is invariant from scene to scene [36]. This 

invariance is a necessary assumption for the technique to work when only the output 

image is available for measurement. The analysis of power spectrum allows to identify 

image degradation.  

Given a 2D image of size 𝑀 × 𝑀 pixels, where a pixel gray level is given by  𝑥, 𝑦 , 

with spatial coordinates 𝑥 and 𝑦 ranging from 0 to 𝑀 − 1, the image power spectrum is 

defined as  𝐻 𝑢, 𝑣  2 where 𝐻 𝑢, 𝑣  is the discrete Fourier transform of the image: 

 

𝐻 𝑢, 𝑣 =   𝑒 −2𝜋∙𝑖∙𝑦 ∙
𝑣
𝑀

 ∙ 𝑒 −2𝜋∙𝑖∙𝑥∙
𝑢
𝑀

 ∙  𝑥, 𝑦  (2.16) 

 

with 𝑢, 𝑣 = −
𝑀

2
, … ,

𝑀

2
.  

IQM is derived from the analysis of the image power spectrum and incorporates several 

factors. It can be derived as follows: 

 

𝐼𝑄𝑀 =
1

𝑀2
  𝑆 𝜃1 ∙ 𝑊 𝜌 ∙ 𝐴2 𝑇 ∙ 𝜌 ∙ 𝑃 𝜌, 𝜃 

0.5

𝜌=0.01

𝜋

𝜃=−𝜋

 (2.17) 

 

where 𝜌, 𝜃 are the polar coordinates of the spatial frequency and 𝑀2 is the image size in 

pixel. The term 𝑃 𝜌, 𝜃  represents the normalized power spectrum, and it is used in 

place of the power spectrum to account for the image size and the possible image-to-

image brightness variations: 

 

𝑃 𝑢, 𝑣 =
 𝐻 𝑢, 𝑣  2

𝜇2 ∙ 𝑀2
 (2.18) 

 

where 𝜇2 is the square of the average gray level of the image. The term 𝑆 𝜃1  represents 
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a weighting factor related to the scale at which the scene is acquired (directional scale 

factor). This term is needed in particular for aerial images for which the image quality is 

strictly related to the object-image scale. The factor 𝑊 𝜌  is derived by applying a 

modified version of the Wiener filter, and allows to evaluate the presence of noise in the 

image power spectrum. Finally the term 𝐴2 𝑇 ∙ 𝜌  introduces into IQM a model of the 

human visual system to obtain a measure highly correlated to visual quality 

assessments. 

2.6.3 Top Sharpening Index 

 

The proposed technique is based on the consideration that if a fingerprint image is 

well focused, then its ridge/valley transitions are sharp. Hence focusing can be 

evaluated by measuring the response of the image to a sharpening filter. This is not a 

novel idea, and is often used for the development of auto-focusing systems (e.g. [37]). 

On the other hand, a specific implementation of sharpening in order to achieve 

invariance with respect to the particular pattern sensed is necessary. In other words, the 

measured focusing level must be related only to the scanner characteristics and not to 

the specific fingerprint acquired. In particular it must be invariant to: 

 the frequency of a ridge/valley cycle . In fact the frequency can vary from finger 

to finger and also from zone to zone in the same finger [9]; 

 the gray level range in the image. The aim is to estimate the steepness of the 

ridge/valley transitions and not its amplitude. 

Top Sharpening Index (TSI) has been studied to fulfil the above requirements which are 

not satisfied by the MTF, CTF and IQM measures. 

Let 𝐼 be an image of size 𝑢 × 𝑣 pixels, totally covered by a fingerprint pattern. The 

proposed index is calculated as follows: 

1. Gray level normalization. 

This step is needed to make TSI independent on the gray level range of the 

image. The normalized image 𝐼𝑛  is obtained by applying a contrast stretching 

function to the gray level value 𝑔𝑖  of each pixel of the original image 𝐼: 

 

𝑓 𝑔𝑖 = 255 ∙
𝑔𝑖 − min 𝐼 

max 𝐼 − min 𝐼 
 (2.19) 
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where 𝑚𝑖𝑛 𝐼  and 𝑚𝑎𝑥 𝐼  represent respectively the minimum and maximum 

gray level value of the image 𝐼 determined by discarding the 1% of the lowest 

and highest values (to prevent outliers affecting the normalization too much). 

2. Image convolution with a sharpening filter. 

The normalized image 𝐼𝑛  is convolved with a sharpening filter 𝐹 thus obtaining 

a new image 𝐼𝑐 =  𝐼𝑛 ∗ 𝐹 : 

 

 

𝐹 =
1

9
∙  

−1 −1 −1
−1 8 −1
−1 −1 −1

  (2.20) 

 

where ∗ denotes the image convolution operation and the operator  ∙  replaces 

each element of the convolved image with its absolute value. Taking the 

absolute value of the filter response is necessary since both high (positive) and 

low (negative) responses denote high steepness. From the example shown in 

Figure 2.19 it is evident that 𝐼𝑐  pixels assume high values in correspondence of 𝐼 

edges. 

 

 

Figure 2.19 - A fingerprint image and the result of the convolution 𝐼𝑐 . 

 

3. TSI computation. 

TSI is calculated by accumulating the values of the top 𝑝% pixels of 𝐼𝑐  (i.e., 

those with highest intensity). Considering only the top percentage of sharpening 

responses allows to achieve invariance with respect to the ridge/valley 
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frequency: in fact, provided that a sufficient number of edges are present in the 

image, further increasing the number of edges does not increase the TSI value. 

On the other, the value of 𝑝 must be tuned according to the scanner nominal 

output resolution. The invariance has been experimentally verified by fixing the 

percentage as follows: 10% at 500𝑑𝑝𝑖 resolution and 5% at 1000𝑑𝑝𝑖. For 

different resolutions the percentage 𝑝 can be derived by linear interpolation. The 

resulting value is normalized in the range  0; 1  by dividing it by a factor 𝑓  

representing the theoretical maximum sharpening value:  

 

 

𝑓 =
8

9
∙ 255 ∙ 𝑝 ∙ 𝑢 ∙ 𝑣 (2.21) 

 

 

The procedure above described is based on the assumption that the image 𝐼 is totally 

covered by a fingerprint pattern. In order to calculate a global TSI value for a generic 

fingerprint image, a partitioning into non-overlapping sub-windows of fixed size and a 

fingerprint area segmentation (i.e. separation of the foreground from the background) is 

necessary. The partitioning is useful for two reasons: 

a) it makes TSI independent of the image size; 

b) it allows to estimate TSI also locally (e.g. the focusing in optical fingerprint 

scanners is usually better in the central region than near the borders). 

The global TSI is obtained by averaging the TSI scores of each sub-image. The 

segmentation is required since the background does not contain significant edges and 

averaging over the whole image would produce a lower score. Several segmentation 

algorithms have been proposed for fingerprints [9]. In this work a simple method based 

on the gray level variance is used. In Figure 2.20 an example of fingerprint area 

segmentation is reported. 
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Figure 2.20 - Fingerprint image (a), and the related segmented image where the sub-windows 

(32 × 32 pixels wide) used to calculate TSI are shown (b). 

 

2.6.4 Experimental results 

 

Four sets of experiments have been carried out: 

 to evaluate the TSI invariance with respect to the ridge/valley frequency and to 

the gray level range; 

 to verify the relation between TSI value and the actual device focusing; 

 to highlight similarities and differences between MTF, IQM and TSI;  

 to show that TSI, analogously to IQM, is able to effectively measure fingerprint 

image focusing. 

For all the following experiments the sub-windows size has been fixed to 32 × 32 

pixels. 

1. Independence of ridge/valley frequency and gray level range. 

For this set of experiments two kinds of images have been used: 

 Bar target images of varying frequency and gray level range. These 

computer generated targets exhibit a fixed steepness for the transition 

between two contiguous bars (see Figure 2.21). 

 

(a) (b) 
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 Fingerprint images of size 400𝑥560 pixels, 569𝑑𝑝𝑖,  acquired with a 

high quality optical sensor (see Figure 2.22). 

In Figure 2.21 a subset of the bar target images of different frequency and gray 

level range is shown. The associated plot of a horizontal section of the targets is 

reported in the last row. Different columns refer to different ridge/valley 

frequencies (from left to right the frequencies range from 1 to 4). The chosen 

values cover the different frequencies present in human fingerprints [9]. All the 

bar targets obtain the same TSI value, thus demonstrating the invariance to 

frequency and gray level range. 

This property has been confirmed by the experiments carried out on fingerprint 

images. The fingerprints in Figure 2.22, characterized by different frequencies 

and gray level range, achieve very similar TSI values. 

 

 

 

Figure 2.21 - Bar targets of different gray level range and frequencies (first and second row) and 

plots of a horizontal section (last row). 
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Figure 2.22 - Fingerprint images with different characteristics: high (a) and low (b) frequency, 

small (c) and large (d) gray level range. For each image the TSI value is reported as well. 

 

2. Relation to the device focusing 

In order to verify the relation between TSI and the ability of a scanner to clearly 

focus a fingerprint, TSI value has been calculated for a set of images of the same 

finger acquired by using an optical sensor while the lens focus was manually 

degraded (by gradually moving the lens away from the ideal position). In Figure 

2.23 a sequence of images progressively more out of focus is reported. In 

addition the related plot of a ridge/valley fingerprint section is shown to prove 

that the blurring produces a steepness reduction of the ridge/valley transitions. 

 0,17813 
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Finally the TSI value of each image is given. The experimental results prove the 

strict relation between the proposed index and the device focusing. 

 

 

Figure 2.23 - In the first row a sequence of progressively defocused images of the same finger is 

shown. Plots of a fingerprint section and the TSI values are given in the second row. 

 

3. Comparison between MTF, IQM and TSI: sinusoidal targets 

A set of experiments has been carried out to investigate the analogies/differences 

between MTF, IQM and TSI, and in particular to show the strict correlation 

between IQM and MTF. Since MTF can be easily measured only on sinusoidal 

targets, for this test a set of sinusoidal target images of various frequencies (from 

1 to 10, typically adopted in the evaluation of 500𝑑𝑝𝑖 scanners [24] [25]) have 

been generated and progressively defocused by applying two different 

smoothing filters (Pillbox [38] and Butterworth [32]) to the original fingerprint 

images . In Figure 2.24 the effect of simulated defocusing is compared against 

physical scanner defocusing. The plots confirm the high similarity of the results. 

In Figure 2.25 an example of original and defocused target is reported. 

 

Figure 2.24 - Plot of a real fingerprint section (a) and plots obtained by: manually defocusing 

the device (b), applying the Pillbox (c) and Butterworth (d) filters. 

 

0,18136 0,15084 0,12264 0,10024 0,08379 

 (a) 

(b) 

(c) 
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Figure 2.25 - First row: sinusoidal targets (a), focus degradation using the Pillbox (b) and the 

Butterworth (c) filters. Second row: related plots of a horizontal section. 

 

In Figure 2.26 the values of MTF, IQM and TSI are given as a function of the 

blurring grade introduced by applying different filters to targets of varying 

frequencies (F1-F10). The graphs show that, MTF and IQM are highly 

correlated (average correlation about 0,97) and exhibit the same decreasing 

trend. 

As to TSI, the value measured for the lower frequencies is almost constant, 

while the trend related to the higher frequencies is decreasing. This is due to the 

invariance to given parameters that characterize TSI (see Subsection 2.6.3). In 

particular, for this kind of targets, the modification produced by the filters on the 

lower frequencies is mainly a reduction of the gray level range (see Figure 2.25) 

which is compensated by the pre-normalization step of TSI computation. In the 

higher frequency targets, the application of the filters produces an effective 

image deterioration, thus determining a lower TSI value. Differently from the 

test on the bar targets, the TSI value is different for varying frequencies due to 

the specific nature of the sinusoidal targets (the steepness of the transitions is not 

constant but depends on the frequency). 

4. Comparison between TSI and IQM: fingerprint images 

The fourth set of experiments, carried out on fingerprint images, is aimed at 

comparing TSI and IQM in the evaluation of image focusing. Since MTF can 

only be calculated for sinusoidal targets, it will not be considered here; 

nevertheless the previous experiments showed the strict relation between IQM 

 (a) (b) (c) 
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and MTF and a comparison between IQM and TSI will give anyway a 

comprehensive analysis.  

 

 

Figure 2.26 - MTF (a,d), IQM (b,e) and TSI (c,f) values as a function of the blurring grade 

introduced by applying the Pillbox (first row) and Butterworth (second one) filters to sinusoidal 

targets. 

 

TSI and IQM values have been calculated for a set of images of the same finger 

acquired by using an optical sensor while the lens focus was manually degraded 

(by gradually moving the lens away from the ideal position) (see Figure 2.23). 

Then the TSI and IQM values of each image are reported in Figure 2.27. The 

experimental results prove the strict relation between the proposed index, the 

IQM measurement and the device focusing. 

Finally an extensive experimentation has been carried out on a large fingerprint 

database. It consists of 6400 images of 800 users. Each image has been gradually 

defocused by applying the two filtering techniques showed above. The results of 

the experiment are reported in Figure 2.28 were the TSI and IQM scores, 

averaged over the 6400 impressions, are plotted as a function of the blurring 

level introduced. In Figure 2.28a the Pillbox filter has been used, while the 

results in  Figure 2.28b refer to the application of the Butterworth filter. Both the 

graphs confirm the relation between IQM and TSI (average correlation about 

0,96), and the ability of the proposed index to effectively measure image 

focusing. 
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Figure 2.27 - TSI and IQM values obtained from the images in Figure 2.23. The correlation 

between the two series is 0.99. 

 

 

 

Figure 2.28 - Average TSI and IQM scores on fingerprint images as a function of the blurring 

level introduced by the application of the Pillbox (a) and Butterworth (b) filters. 

 

To conclude, the experimental results confirmed the efficacy of TSI and its invariance 

with respect to the ridge/valley frequency and to the gray level range and showed that 

TSI behaves similarly to MTF and IQM in characterizing the level of image focusing 

but its computation is simpler and, more important, it is invariant with respect to those 

image characteristics (i.e. ridge/valley frequency and gray level range) that must not 

affect the measure.  
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2.7 Conclusions 

 

This chapter addressed the problem of evaluating and certifying the ―operational 

quality‖ of fingerprint scanners. To this purpose, the main quality parameters and the 

corresponding requirements defined in FBI IAFIS [20], PIV [22] and PassDEÜV [23] 

IQS have been considered and a large experimentation has been carried out to 

understand their effects on fingerprint recognition accuracy. To run the test described in 

Section 2.4, a total of 176,400 image transformations have been performed and a total 

of 16,314,200 fingerprint pairs have been compared. 

These experiments shown that the most critical quality parameters are the Acquisition 

area and the Output resolution, which, at the PIV IQS minimum requirements, caused 

an average performance drop of 73% and 20%, respectively. On the other hand, other 

quality parameters (Signal to Noise Ratio, and Dynamic Range) do not seem to affect 

much the automated recognition performance. 

Starting from these results, in cooperation with CNIPA, three new set of quality 

requirements, able to guarantee an optimal cost/performance tradeoff for (totally-

automated) biometric applications, have been designed according to the above 

outcomes. Then, these new IQS are evaluated by comparing their potential effects on 

recognition accuracy with those caused by PIV and PassDEÜV ones. 

Although the results of this analysis partially depend on the specific scanner used for 

collecting the test database, similar results would be obtained starting from images 

acquired by other scanners. According to the experimental results reported in 

Subsection 2.5.2, To conclude, the three proposed specifications are well suited for the 

applications they are targeted to. In particular: 

 CNIPA-A specification is able to guarantee the best performance among the five 

IQS reviewed, thanks to the higher acquisition area, which proved to be the most 

important parameter; 

 CNIPA-B specification is able to guarantee an accuracy that is clearly better 

than PIV and not too far from PassDEÜV; on the other hand, the cost of a device 

compliant to CNIPA-B would be definitely lower than that of one compliant to 

PassDEÜV, thanks to the less demanding requirements on five parameters; 

 CNIPA-C specification can guarantee an accuracy similar to PIV but, also in this 
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case, the cost of a device compliant to CNIPA-C would be definitely lower than 

the cost of PIV-compliant devices. 

Finally, a new quality index (TSI) to evaluate the fingerprint scanners focusing has been 

proposed and compared with two well known indicators, MTF and IQM. The 

experimental results show that TSI behaves similarly to MTF and IQM in characterizing 

the level of image focusing but its computation is simpler and, more important, it is 

invariant with respect to those image characteristics (i.e. ridge/valley frequency and 

gray level range) that must not affect the measure. Therefore it constitutes a very 

effective solution for measuring fingerprint scanner focusing. 
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3  

MINUTIA CYLINDER-CODE 

 

 

3.1 Introduction 

 

Fingerprint recognition is an intriguing pattern recognition problem studied by 

more than forty years. Although very effective solutions are nowadays available, 

fingerprint recognition cannot be considered a fully solved problem, and the design of 

accurate, interoperable and computationally light algorithms is still an open issue [9]. 

Most fingerprint matching algorithms are based on minutiae (i.e., ridge ending and 

bifurcations). For a long time, minutiae matching had been treated as a 2D point pattern 

matching problem, aimed at determining the global (rigid) alignment leading to an 

optimal spatial (and directional) minutiae pairing. This formulation of the problem can 

be solved by searching the space of possible transformations: Hough transform is a 

common solution [39] [40]. Unfortunately, most of the global minutiae matching 

algorithms are computationally demanding, and lack of robustness with respect to non-

linear fingerprint distortion. 

In the last decade these weaknesses were addressed by introducing local minutiae 

matching techniques. Local minutiae structures are characterized by attributes that are 

invariant with respect to global transformations (e.g., translation, rotation, etc.) and 

therefore are suitable for matching without any a priori global alignment. Matching 

fingerprints based only on local minutiae arrangements relaxes global spatial 

relationships, which are highly distinctive, and therefore reduces the amount of 

information available for discriminating fingerprints. However, the benefits of both 
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local and global matching can be preserved by implementing hybrid strategies that 

perform a local structure matching followed by a consolidation stage. The local 

structure matching allows to quickly and robustly determine pairs of minutiae that 

match locally (i.e., whose neighboring features are compatible); the consolidation is 

aimed at verifying if and to what extent local matches hold at global level. It is worth 

noting that the consolidation step is not mandatory and a score can be directly derived 

from the local structure matching. The local matching itself can also lead to an early 

rejection in case of very different fingerprints.  

Local minutiae matching algorithms evolved through three generations of methods: i) 

the earlier approaches whose local structures were typically formed by counting the 

number of minutiae falling inside some regions and no global consolidation was 

performed [41] [42]; ii) the approaches by Jiang and Yau [43] and Ratha et al. [44], who 

first effectively encoded the relationships between a minutia and its neighboring 

minutiae in term of invariant distances and angles, and proposed global consolidation; 

iii) the numerous variants and evolutions of Jiang and Yau [43] and Ratha et al. [44] 

methods, which typically extend the feature set by taking into account: local orientation 

field, local frequency, ridge shape, etc., see [45-70]. The reader may refer to [9] for an 

exhaustive review and classification of the literature on local minutiae matching.  

Local minutiae structures can be classified into nearest neighbor-based and fixed 

radius-based. In the former family (well represented by Jiang and Yau’s algorithm 

[43]), the neighbors of the central minutia are defined as its K spatially closest minutiae. 

This leads to fixed-length descriptors that can be usually matched very efficiently. In the 

latter (well represented by Ratha et al.’s algorithm [44]), the neighbors are defined as all 

the minutiae that are closer than a given radius R to the central minutia. The descriptor 

length is variable and depends on the local minutiae density; this can lead to a more 

complex local matching, but, in principle, is more tolerant against missing and spurious 

minutiae. Two drawbacks of [44] are: i) the absolute encoding of radial angles (whose 

corresponding relative encoding is denoted as 𝑑𝑅  in Figure 3.7) that requires a 

sophisticated local matching and, ii) the missing directional difference between the 

central minutia and the neighboring ones (denoted as 𝑑𝜃  in Figure 3.7). Furthermore, 

the approach in [44], like most fixed-radius ones, can lead to border errors: in particular, 

minutiae close to the local-region border in one of the two fingerprints can be 

mismatched because local distortion or location inaccuracy may cause the same 
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minutiae to move out of the local region in the other fingerprint. The technique 

proposed by Feng in [49] does not suffer from the above drawbacks and can be 

considered a state-of-the-art fixed-radius local matching algorithm. In particular, the 

border problem is dealt with by considering minutiae not close to the border as 

matchable and minutiae near the border as should-be-matchable. 

This chapter introduces a novel minutiae-only local representation aimed at combining 

the advantages of both neighbor-based and fixed-radius structures, without suffering 

from their respective drawbacks.  

The rest of this chapter is organized as follows. Section 3.2 introduces the main 

motivations of this work and summarizes the advantages of the new technique. Section 

3.3 defines the minutiae local structures and discusses how to measure the similarity 

between them. Section 3.4 proposes four simple approaches to consolidate local 

similarities into a global score. In Section 3.5, a large number of experiments are 

reported to compare the new approach with three ―minutiae-only‖ implementations of 

the well-known approaches described in [43] [44] [49]. Finally Section 0 draws some 

concluding remarks. 

 

3.2 Motivations and Contributions 

 

The main motivations that induced us to design a new local minutiae matching 

technique are: 

 Need of accurate and interoperable minutiae-only algorithms. Most of the 

fingerprint matching algorithms recently proposed exploit several extra features 

besides minutiae; in [10] some statistics about the features used by FVC2004 

participants are reported. Researchers have shown that combining features (at 

least partially independent) is a very effective way to improve accuracy. On the 

other hand, unlike minutiae features, there is still no convergence on standards 

that precisely define and encode these extra features (one of the first attempt is 

CDEFFS (2008) [71] but it is still at an early stage). The world-wide large-scale 

deployment of fingerprint systems demands a new generation of accurate and 

highly interoperable algorithms and for this reason I believe that minutiae-only 

matching algorithms compliant to ISO/IEC 19794-2 (2005) [72] (or the very 
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similar ANSI/INCITS 378 (2004) [73]) will play a central role in the 

forthcoming years. Furthermore, minutiae-only templates also allow to compress 

into a few hundreds of bytes the salient fingerprint information, thus enabling 

their storage on inexpensive smart cards. 

 Portability on light architectures. One effective way to secure biometric 

applications against external attacks is to confine the computation inside a 

closed system, that is a secure hardware platform such as a smart card or a 

system-on-a-chip. Unfortunately, the computational power of these low-cost 

secure platforms is hundred or thousand times lower than that of a modern PC 

[9] and resource demanding algorithms cannot be executed on board. 

Algorithms designers then concentrated on the development of simplified 

optimized versions, often based on local minutiae matching techniques and pre-

computed information. However, recent MINEX II results [74] have shown that 

the best existing match-on-card algorithms cannot compete with the 

corresponding PC implementations and further research efforts are necessary. 

Analogous conclusions were drawn in [10] concerning the performance drop of 

the light category with respect to the open category in FVC2004. 

 Suitability for template protection techniques. Template protection is currently 

receiving much attention because of the great benefits it can provide (e.g., non-

reversibility, diversity and revocability): [75] [9]. Unfortunately, designing 

effective template protection techniques (e.g., fuzzy vault [76] [77] [78] [79] 

[80]), without incurring in a relevant accuracy drop, is very challenging and 

seems to require alignment free, fixed-length and noise-tolerant feature coding. 

At today, no fully satisfactory solution has been proposed. 

The local minutiae representation introduced in this chapter is based on 3D data 

structures (called cylinders), built from invariant distances and angles in a neighborhood 

of each minutia. Cylinders can be created starting from a subset of mandatory features 

in standards like ISO/IEC 19794-2 (2005). In particular, only position and direction of 

the minutiae have been used, but not the minutiae type and the minutiae quality: in fact 

minutiae type is not a robust feature, and the definition of minutiae quality is not 

semantically clear in the standards (and could lead to interoperability problems). Thanks 

to the cylinder invariance, fixed-length and bit-oriented coding, some simple but 

effective metrics can be defined to compute cylinder similarity. Four global-scoring 
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techniques are then proposed to combine local similarities into a unique global score 

denoting the overall similarity between two fingerprints. The main advantages of the 

new method, called Minutia Cylinder-Code (MCC), are: 

 MCC is a fixed-radius approach and therefore it tolerates missing and spurious 

minutiae better than nearest neighbor-based approaches. 

 Unlike traditional fixed-radius techniques, MCC relies on a fixed-length 

invariant coding for each minutia and this makes the computation of local 

structure similarities very simple. 

 Border problems are gracefully managed without extra burden in the coding and 

matching stages. 

 Local distortion and small feature extraction errors are tolerated thanks to the 

adoption of smoothed functions (i.e., error tolerant) in the coding stage. 

 MCC effectively deals with noisy fingerprint regions where minutiae extraction 

algorithms tend to place numerous spurious minutiae (close to each other); this 

is made possible by the saturation effect produced by a limiting function. 

 The bit-oriented coding (one of the possible implementations of MCC) makes 

cylinder matching extremely simple and fast, reducing it to a sequence of bit-

wise operations (e.g., AND, XOR) that can be efficiently implemented even on 

very simple CPUs. 

 

3.3 The Local Structures 

 

MCC representation associates a local structure to each minutia. This structure 

encodes spatial and directional relationships between the minutia and its (fixed-radius) 

neighborhood and can be conveniently represented as a cylinder whose base and height 

are related to the spatial and directional information, respectively (Figure 3.1). 

Let 𝑇 =  𝑚1, 𝑚2, . . , 𝑚𝑛  be an ISO/IEC 19794-2 minutiae template [72]: each minutia 

𝑚 is a triplet 𝑚 =  𝑥𝑚 , 𝑦𝑚 , 𝜃𝑚   where 𝑥𝑚  and 𝑦𝑚  are the minutia location, 𝜃𝑚  is the 

minutia direction (in the range  0,2𝜋 ). In the following, Subsection 3.3.1 describes how 

the local structure of a given minutia 𝑚 is built; Subsection 3.3.2 discusses the creation 

of a whole cylinder-set from 𝑇, and Subsection 3.3.3 introduces a similarity measure 

between cylinders; finally, Subsection 3.3.4 focuses on a bit-oriented efficient 
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implementation. 

 

Figure 3.1 - A graphical representation of the local structure associated to a given minutia: (a) 

the cylinder with the enclosing cuboid; (b) the discretization of the cuboid into cells (c) of size 

Δ𝑆 × Δ𝑆 × Δ𝐷: only cells whose center is within the cylinder are shown. Note that the cylinder is 

rotated so that axis 𝑖 (d) is aligned to the direction of the corresponding minutia (e). 

 

3.3.1 The Cylinder of a given minutia 

 

The local structure associated to a given minutia 𝑚 =  𝑥𝑚 , 𝑦𝑚 , 𝜃𝑚   is 

represented by a cylinder with radius 𝑅 and height 2𝜋, whose base is centered on the 

minutia location  𝑥𝑚 , 𝑦𝑚  , see Figure 3.1.a. 

The cylinder is enclosed inside a cuboid whose base is aligned according to the 

minutiae direction 𝜃𝑚 ; the cuboid is discretized into 𝑁𝐶 = 𝑁𝑆 × 𝑁𝑆 × 𝑁𝐷  cells. Each 

cell is a small cuboid with Δ𝑆 × Δ𝑆 base and Δ𝐷 height, where Δ𝑆 =
2∙𝑅

𝑁𝑆
 and Δ𝐷 =

2𝜋

𝑁𝐷
 

(Figure 3.1.b). 

Each cell can be uniquely identified by three indices  𝑖, 𝑗, 𝑘  that denote its position in 

the cuboid enclosing the cylinder, with 𝑖, 𝑗 ∈ 𝐼𝑆 =  𝑛 ∈ ℕ, 1 ≤ 𝑛 ≤ 𝑁𝑆  and 𝑘 ∈ 𝐼𝐷 =

 𝑛 ∈ ℕ, 1 ≤ 𝑛 ≤ 𝑁𝐷 . 

Let 
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𝑑𝜑𝑘 = −𝜋 +  𝑘 −
1

2
 ∙ Δ𝐷 (3.1) 

be the angle associated to all cells at height 𝑘 in the cylinder, and let 

 

 𝑝𝑖 ,𝑗
𝑚 =  

𝑥𝑚

𝑦𝑚
 + Δ𝑆 ∙  

cos 𝜃𝑚  sin 𝜃𝑚 

− sin 𝜃𝑚  cos 𝜃𝑚  
 ∙  

𝑖 −
𝑁𝑆 + 1

2

𝑗 −
𝑁𝑆 + 1

2

  (3.2) 

 

be the two-dimensional point corresponding to the center of the cells with indices 𝑖, 𝑗 

(projected onto the cylinder’s base), expressed in the spatial coordinates of the minutiae 

template; since these points are projected onto the base, index 𝑘 is not needed. 

For each cell  𝑖, 𝑗, 𝑘 , a numerical value 𝐶𝑚  𝑖, 𝑗, 𝑘  is calculated by accumulating 

contributions from each minutia 𝑚𝑡  belonging to the neighborhood 𝑁𝑝𝑖 ,𝑗
𝑚  of 𝑝𝑖 ,𝑗

𝑚 : 

 

𝑁𝑝𝑖 ,𝑗
𝑚 =  𝑚𝑡 ∈ 𝑇; 𝑚𝑡 ≠ 𝑚, 𝑑𝑆 𝑚𝑡 , 𝑝𝑖,𝑗

𝑚  ≤ 3𝜍𝑆  (3.3) 

 

where 3𝜍𝑆 is the radius of the neighborhood (see Figure 3.2) and 𝑑𝑆 𝑚, 𝑝  is the 

Euclidean distance between minutia 𝑚 and point 𝑝. 

Function Cm: IS × IS × ID→V  is defined as follows: 

 

𝐶𝑚  𝑖, 𝑗, 𝑘 =  
Ψ    𝐶𝑚

𝑆  𝑚𝑡 ,𝑝𝑖,𝑗
𝑚  ∙ 𝐶𝑚

𝐷 𝑚𝑡 , 𝑑𝜑𝑘  𝑚 𝑡∈𝑁𝑝𝑖,𝑗
𝑚  if 𝜉𝑚 𝑝𝑖,𝑗

𝑚  = 𝑣𝑎𝑙𝑖𝑑

𝑖𝑛𝑣𝑎𝑙𝑖𝑑 otherwise

   (3.4) 

 

where: 

 𝑉 =  0,1 ∪  𝑖𝑛𝑣𝑎𝑙𝑖𝑑  is the function codomain. 

 The two terms 𝐶𝑚
𝑆  𝑚𝑡 , 𝑝𝑖 ,𝑗

𝑚   and 𝐶𝑚
𝐷 𝑚𝑡 , 𝑑𝜑𝑘  are the spatial and directional 

contribution of minutia 𝑚𝑡 , respectively (they will be described in the following 

paragraphs). 

 𝜉𝑚 𝑝𝑖 ,𝑗
𝑚  =  

𝑣𝑎𝑙𝑖𝑑 if 𝑑𝑆 𝑚, 𝑝𝑖,𝑗
𝑚  ≤ 𝑅 and 𝑝𝑖 ,𝑗

𝑚 ∈ 𝐶𝑜𝑛𝑣𝐻𝑢𝑙𝑙 (𝑇, Ω)
  

𝑖𝑛𝑣𝑎𝑙𝑖𝑑 otherwise

  

where 𝐶𝑜𝑛𝑣𝐻𝑢𝑙𝑙  𝑇, Ω  is the convex hull [81] of the minutiae in 𝑇, enlarged by 
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adding an offset of Ω pixels (see Fig. Figure 3.5.a). Intuitively, a cell is 

considered as 𝑣𝑎𝑙𝑖𝑑 if and only if its center 𝑝𝑖 ,𝑗
𝑚  is contained in the intersection 

of the cylinder’s base with the convex hull determined by all the minutiae in 𝑇 

(see Figure 3.5.b): this condition is important to avoid considering portions of 

the cylinder that probably lie outside the fingerprint area and hence cannot 

contain relevant information. 

 Ψ 𝑣 = Ζ 𝑣, 𝜇Ψ, 𝜏Ψ  is a sigmoid function, controlled by two parameters (𝜇Ψ 

and 𝜏Ψ), that limits the contribution of dense minutiae clusters (typical of noisy 

regions), and ensures the final value is in the range  0,1 ; the sigmoid function is 

defined as: 

 

Ζ 𝑣, 𝜇, 𝜏 =
1

1 + 𝑒−𝜏∙ 𝑣−𝜇 
 (3.5) 

 

Basically, the value 𝐶𝑚 𝑖, 𝑗, 𝑘  of a valid cell represents the likelihood of finding 

minutiae near 𝑝𝑖 ,𝑗
𝑚  with a directional difference, with respect to 𝑚, close to 𝑑𝜑𝑘 . This 

likelihood is obtained by summing the contributions of all the minutiae in neighborhood 

𝑁𝑝𝑖 ,𝑗
𝑚 . The contribution of each minutia 𝑚𝑡  is defined as the product of 𝐶𝑚

𝑆  and 𝐶𝑚
𝐷 . 

𝐶𝑚
𝑆  𝑚𝑡 , 𝑝𝑖,𝑗

𝑚   is the spatial contribution that minutia 𝑚𝑡  gives to cell  𝑖, 𝑗, 𝑘 ; it is defined 

as a function of the Euclidean distance between 𝑚𝑡  and 𝑝𝑖 ,𝑗
𝑚 : 

 

𝐶𝑚
𝑆  𝑚𝑡 , 𝑝𝑖 ,𝑗

𝑚  = 𝐺𝑆  𝑑𝑆 𝑚𝑡 , 𝑝𝑖 ,𝑗
𝑚    (3.6) 

 

where 

 

𝐺𝑆 𝑡 =
1

𝜍𝑆 2𝜋
𝑒

 − 
𝑡2

2𝜍𝑆
2 

 (3.7) 

 

is the Gaussian function with zero mean and 𝜍𝑆 standard deviation. 

Figure 3.2 graphically shows the values of 𝐺𝑆 𝑡  in the neighborhood of a given cell 

(darker areas represent higher values). It is worth noting that minutiae involved in the 
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computation of 𝐶𝑚  𝑖, 𝑗, 𝑘  do not necessarily lie inside the base of the cylinder centered 

in 𝑚 with radius 𝑅; in fact, minutiae lying in the offset region  𝑅, 𝑅 + 3𝜍𝑆  still 

contribute to 𝐶𝑚  𝑖, 𝑗, 𝑘  and this allow to avoid the tedious border effect. 

 

 

Figure 3.2 - Section of a cylinder associated to a minutia 𝑚. All the minutiae involved in the 

construction of the cylinder are shown. Note that they do not necessarily lie inside the cylinder 

base, since an offset of 3𝜍𝑆 is allowed. 𝐺𝑆 𝑡  values in the neighborhood of a given cell (with 

center 𝑝𝑖 ,𝑗
𝑚 ) are highlighted (darker areas represents higher values). The black minutiae are those 

within neighborhood 𝑁𝑝𝑖 ,𝑗
𝑚 . 

 

𝐶𝑚
𝐷 𝑚𝑡 , 𝑑𝜑𝑘  is the directional contribution of 𝑚𝑡 ; it is defined as a function of: i) 𝑑𝜑𝑘 , 

and ii) the directional difference between 𝜃𝑚  and 𝜃𝑚𝑡
. Intuitively, the contribution is 

high when i) and ii) are close to each other. 

 

𝐶𝑚
𝐷 𝑚𝑡 , 𝑑𝜑𝑘 = 𝐺𝐷  𝑑𝜙 𝑑𝜑𝑘 , 𝑑𝜃 𝑚, 𝑚𝑡    (3.8) 

 

where 𝑑𝜙 𝜃1, 𝜃2  is the difference between two angles 𝜃1 , 𝜃2: 

 

𝑑𝜙 𝜃1, 𝜃2 =  

𝜃1 − 𝜃2 if − 𝜋 ≤ 𝜃1 − 𝜃2 < 𝜋
2𝜋 + 𝜃1 − 𝜃2 if 𝜃1 − 𝜃2 < −𝜋
2𝜋 − 𝜃1 + 𝜃2 if 𝜃1 − 𝜃2 ≥ 𝜋

  (3.9) 

 

and 𝑑𝜃 𝑚1, 𝑚2  is the directional difference between two minutiae: 

𝑦 

𝑗 

𝒎 

 

𝒑𝒊,𝒋
𝒎 

𝟑𝝈𝑺 

𝑥 

𝑖 

𝑹 
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𝑑𝜃 𝑚1, 𝑚2 = 𝑑𝜙 𝜃𝑚1
, 𝜃𝑚2

  (3.10) 

 

𝐺𝐷 𝛼  is the area under a Gaussian (with zero mean and standard deviation 𝜍𝐷), in the 

interval  𝛼 −
Δ𝐷

2
, 𝛼 +

Δ𝐷

2
 : 

 

𝐺𝐷 𝛼 =
1

𝜍𝐷 2𝜋
 ⅇ

−
𝑡2

2𝜍𝐷
2

𝛼+
Δ𝐷
2

𝛼−
Δ𝐷
2

𝑑𝑡 (3.11) 

 

Figure 3.3 shows the local structure associated to a given minutia 𝑚 in a simplified case 

where there is only one minutia that contributes to cell values 𝐶𝑚  𝑖, 𝑗, 𝑘 . Figure 3.4 

shows the cylinder associated to a minutia with five minutiae in its neighborhood. 

 

 

3.3.2 Creation of a Cylinder-Set 

 

The cylinder-set obtained from an ISO/IEC 19794-2 minutiae template 𝑇 is 

defined as: 

 

𝐶𝑆 = {𝐶𝑚 |𝐶𝑚  𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛𝑣𝑎𝑙𝑖𝑑, 𝑚 ∈ 𝑇} (3.12) 

 

where 𝐶𝑚  is the cylinder associated to minutia 𝑚, containing values 𝐶𝑚 𝑖, 𝑗, 𝑘 . A 

cylinder 𝐶𝑚  is considered 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 in the following cases: 

 there are less than 𝑚𝑖𝑛𝑉𝐶  𝑣𝑎𝑙𝑖𝑑 cells in the cylinder; 

 there are less than 𝑚𝑖𝑛𝑀  minutiae that contribute to the cylinder (i.e., there are 

less than 𝑚𝑖𝑛𝑀  minutiae 𝑚𝑡  such that 𝑑𝑆 𝑚𝑡 , 𝑚 ≤ 𝑅 + 3𝜍𝑆, with 𝑚𝑡 ≠ 𝑚). 

Figure 3.5 shows a minutia template and three valid cylinders from the corresponding 

cylinder-set. 
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Figure 3.3 - A simplified case where only one minutia (𝑚1) contributes to the cylinder 

associated to minutia 𝑚. Different 𝐶𝑚 𝑖, 𝑗, 𝑘  values are represented by different gray levels (the 

lighter, the greater). The 𝑁𝐷  areas (six in this example) under the Gaussian curve are graphically 

highlighted and the relevant values in equations (3.8) and (3.11) are numerically exemplified for 

each 𝑘: in particular, 𝛼𝑘 = 𝑑𝜙 𝑑𝜑𝑘 , 𝑑𝜃 𝑚, 𝑚1   is the input value of function 𝐺𝐷 in (3.8), 

while 𝛼𝑘
𝐿 and 𝛼𝑘

𝑈 are the lower and upper limits of the integral in (3.11), respectively. In 

practice, minutia 𝑚1 contributes to more cylinder sections with different weights, according to 

its directional difference with 𝑚. Note that non-zero cell values are not perfectly symmetric 

with respect to the cell containing 𝑚1: this is because 𝑚1 does not exactly lie in the center of the 

cell. 

 

3.3.3 The Similarity between Two Cylinders 

 

Each cylinder is a local data structure: 

 invariant for translation and rotation, since i) it only encodes distances and 

directional differences between minutiae (see equations (3.6) and (3.8)), and ii) 

its base is rotated according to the corresponding minutia direction, see equation 
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(3.2); 

 robust against skin distortion (which is small at a local level) and against small 

feature extraction errors, thanks to the smoothed nature of the functions defining 

the contribution of each minutia (see (3.7) and (3.11)), and to the limiting 

function Ψ in (3.4); 

 with a fixed-length given by the number of cells 𝑁𝐶 . 

For the above reasons, the similarity between two cylinders can be simply defined using 

a vector correlation measure, as described in the following paragraphs. 

Given a cylinder 𝐶𝑚 , let 𝑙𝑖𝑛: IS × IS × ID → ℕ be a function that linearizes the cylinder 

cell indices: 

 

𝑙𝑖𝑛 𝑖, 𝑗, 𝑘 =  𝑘 − 1 ⋅  𝑁𝑆 
2 +  𝑗 − 1 ⋅ 𝑁𝑆 + 𝑖 (3.13) 

and let 𝐜𝑚 ∈ 𝑉𝑁𝐶  be the vector derived from 𝐶𝑚  (𝑉 is the codomain of (3.4)), according 

to (3.13): 

 

𝐜𝑚  𝑙𝑖𝑛 𝑖, 𝑗, 𝑘  = 𝐶𝑚  𝑖, 𝑗, 𝑘  (3.14) 

Given two minutiae 𝑎 and 𝑏, let 𝐜𝑎  and 𝐜𝑏  be the vectors derived from cylinders 𝐶𝑎  and 

𝐶𝑏 : two corresponding elements 𝐜𝑎 𝑡  and 𝐜𝑏  𝑡  are considered as matchable if and only 

if 𝐜𝑎  𝑡 ≠ 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 ∧ 𝐜𝑏  𝑡 ≠ 𝑖𝑛𝑣𝑎𝑙𝑖𝑑. Let 𝐜𝑎|𝑏 , 𝐜𝑏|𝑎 ∈  0,1 𝑁𝐶  be the two vectors 

derived from 𝐜𝑎  and 𝐜𝑏  considering matchable elements only: 

 

𝐜𝑎 |𝑏  𝑡 =  
𝐜𝑎  𝑡 if 𝐜𝑎 𝑡  and 𝐜𝑏  𝑡  are 𝑚𝑎𝑡𝑐𝑎𝑏𝑙𝑒
0 otherwise

  (3.15) 

𝐜𝑏 |𝑎 𝑡 =  
𝐜𝑏  𝑡 if 𝐜𝑏  𝑡  and 𝐜𝑎 𝑡  are 𝑚𝑎𝑡𝑐𝑎𝑏𝑙𝑒
0 otherwise

  (3.16) 

In practice, matchable elements corresponds to the intersection of the valid cells of the 

two cylinders. 

The similarity between the two cylinders is defined as: 

 

𝛾 𝑎, 𝑏 =  
1 −

 𝐜𝑎|𝑏 − 𝐜𝑏|𝑎 

 𝐜𝑎 |𝑏 +  𝐜𝑏 |𝑎 
if 𝐶𝑎  and 𝐶𝑏  are 𝑚𝑎𝑡𝑐𝑎𝑏𝑙𝑒

0 otherwise

  (3.17) 

where two cylinders are matchable if the following conditions are met: 
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1. the directional difference between the two minutiae is not greater than δ𝜃  

(𝑑𝜙 𝜃𝑎 , 𝜃𝑏 ≤ δ𝜃 ); 

2. at least 𝑚𝑖𝑛𝑀𝐸  corresponding elements in the two vectors 𝐜𝑎  and 𝐜𝑏  are 

matchable; 

3.  𝐜𝑎|𝑏 +  𝐜𝑏 |𝑎 ≠ 0. 

The first condition helps to reduce the number of matchable cylinders by assuming a 

maximum possible rotation between the two fingerprints; the second condition avoids to 

compare cylinders with a too small valid intersection; the third condition excludes the 

case where a sufficiently-large valid intersection of two valid cylinders does not contain 

any information. 

Note that 𝛾 𝑎, 𝑏  is always in the range  0,1 : zero means no similarity and one denotes 

maximum similarity. In the following, depending on the context, 𝛾 𝑎, 𝑏  has been used 

to refer to the cylinder similarity, the local structure similarity or the minutiae 

similarity; because of the 1:1 relationship between minutiae and cylinders, this notation 

flexibility does not lead to ambiguities. 

 

3.3.4 Bit-based Implementation 

 

The characteristics of the local structures and similarity measure introduced in 

the previous sections make MCC well suited for a bit-based implementation. To this 

purpose, Ψ 𝑣  in equation (3.4) may be changed from a sigmoid to a unit step function: 

 

Ψ𝐵𝑖𝑡 𝑣 =  
1 if 𝑣 ≥ 𝜇Ψ

0 otherwise
  (3.18) 

thus constraining the codomain of 𝐶𝑚 𝑖, 𝑗, 𝑘  to the binary values 0, 1 and 𝑖𝑛𝑣𝑎𝑙𝑖𝑑. In 

such an implementation, a given cylinder 𝐶𝑚  can be stored as two bit-vectors 𝐜𝑚 , 𝐜 𝑚 ∈  0,1 𝑁𝐶 , 

the former storing the cell values, and the latter denoting the cell validities (see also 

(3.13)): 

𝐜𝑚  𝑙𝑖𝑛 𝑖, 𝑗, 𝑘  =  
1 if 𝐶𝑚  𝑖, 𝑗, 𝑘 = 1 
0 otherwise

 

𝐜 𝑚  𝑙𝑖𝑛 𝑖, 𝑗, 𝑘  =  
1 if 𝐶𝑚  𝑖, 𝑗, 𝑘 ≠ 𝑖𝑛𝑣𝑎𝑙𝑖𝑑 
0 otherwise

 
 (3.19) 
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Figure 3.4 - A graphical representation of a cylinder: the minutiae involved (a) and the cell 

values (b): lighter areas represent higher values. 

 

(3.15) and (3.16) can be calculated as follows: 

 

𝐜𝑎|𝑏 = 𝐜𝑎  AND 𝐜 𝑎𝑏  , 𝐜𝑏|𝑎 = 𝐜𝑏  AND 𝐜 𝑎𝑏  (3.20) 

where AND denotes the bitwise-and between two bit-vectors, and 𝐜 𝑎𝑏 = 𝐜 𝑎AND 𝐜 𝑏  is 

the intersection of the two masks. Finally, the similarity between the two cylinders can 

be computed as: 

 

𝛾𝐵𝑖𝑡 𝑎, 𝑏 =  
1 −

 𝐜𝑎|𝑏  XOR 𝐜𝑏|𝑎 

 𝐜𝑎 |𝑏 +  𝐜𝑏|𝑎 
if 𝐶𝑎  and 𝐶𝑏  are 𝑚𝑎𝑡𝑐𝑎𝑏𝑙𝑒

0 otherwise

  (3.21) 

 

where XOR denotes the bitwise-exclusive-or between two bit-vectors. Note that the 

norm of a bit-vector can be simply computed by calculating the square root of the 

number of bits with value one. Figure 3.6 shows an example of cylinder obtained using 

the bit-based implementation. 

𝑚 

𝑚1  

𝑚2  

𝑚3  

𝑚4  

𝑚5  

𝑖 

𝑗 

(a) 

𝑖 

𝑗 

𝑘 

(b) 
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Table 3.1 compares the number of floating point and integer operations involved in the 

computation of the similarity between two cylinders for a normal and bit-based 

implementation, respectively. Note that the bit-based implementation requires only five 

floating point operations and a very small number of integer and bitwise operations. 

Hence, (3.20) and (3.21) can be implemented very efficiently, even on light 

architectures (e.g., smart cards), where floating point operations are absent or very slow 

because they have to be replaced by surrogates (fixed point arithmetic or software 

emulation). 

 

Table 3.1 - Number of operations required to compute the similarity between two cylinders. 

 

Normal implementation Bit-based implementation 

as a function 

of  𝑁𝐶  
for 𝑁𝐶 = 1536†  

as a function 

of  𝑁𝐶  and 𝑟𝑠‡ 

for 𝑁𝐶 = 1536, 

𝑟𝑠 = 32  

Square root 

extraction (float) 
3 3 3 3 

Multiplications and 

divisions (float) 
3 ⋅ 𝑁𝐶 + 1  4609 1 1 

Sums and 

subtractions (float) 
4 ⋅ 𝑁𝐶 − 1  6143 1 1 

Comparisons (i.e., 

checking if a value 

is 𝑖𝑛𝑣𝑎𝑙𝑖𝑑) 

(float) 

2 ⋅ 𝑁𝐶   3072 0 0 

Sums (integer) 0 0 
3⋅𝑁𝐶

𝑟𝑠
− 2  142 

Counting number of 

1’s in a register 
0 0 

3⋅𝑁𝐶

𝑟𝑠
  144 

Bitwise  

AND 
0 0 

3⋅𝑁𝐶

𝑟𝑠
  144 

Bitwise  

XOR 
0 0 

𝑁𝐶

𝑟𝑠
  48 

† 𝑁𝐶 = 1536 corresponds to 𝑁𝑆 = 16 and 𝑁𝐷 = 6, which are the default values in our 

implementation (see Table 3.2). 
‡ Number of bits in the CPU registers. 
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Figure 3.5 - A minutiae template with the corresponding convex hull (a). For each of the three 

minutiae highlighted in (a), column (b) shows the base of the corresponding cylinder (only valid 

cells are drawn); minutiae within the dashed circles are those that contribute to the cylinder cell 

values. Column (c) shows the cell values of the three cylinders for each value of 𝑘 ∈  1, … ,6  
(lighter elements represent higher values); note that the cylinder sections in (c) are rotated 

according to the direction of the corresponding minutia. 

 

 

Figure 3.6 - The cell values of the cylinder associated to minutia 𝑚3 in Figure 3.5 using the bit-

based implementation (black=0, white=1, gray=𝑖𝑛𝑣𝑎𝑙𝑖𝑑). 
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3.4 Global Score and Consolidation 

 

In the previous section, a measure of local similarity between cylinders has been 

proposed. In order to compare two minutiae templates (i.e., two fingerprints), a single 

value (global score), denoting their overall similarity, has to be obtained from the local 

similarities. In the following, four simple techniques, inspired to ideas already proposed 

in the literature, are introduced to combine local similarities into a global score.  

The first two may be classified as ―pure local techniques‖, since they only combine 

local similarities; the other two implement a consolidation step to obtain a score that 

reflects to what extent the local relationships hold at global level. In the experimental 

evaluation, where MCC is compared to three well-known local algorithms, these four 

techniques are applied both to MCC and to the other ones. 

Given two ISO/IEC 19794-2 minutiae templates 𝐴 =  𝑎1, 𝑎2, … , 𝑎𝑛𝐴
  and 𝐵 =

 𝑏1, 𝑏2, … , 𝑏𝑛𝐵
 , let: 

 𝛾 𝑎, 𝑏  be the local similarity between minutia 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵, with 𝛾: 𝐴 ×

𝐵 →  0,1 ; 

 Γ ∈  0,1 𝑛𝐴 ×𝑛𝐵
 be a matrix containing all the local similarities, with Γ 𝑟, 𝑐 =

𝛾 𝑎𝑟 , 𝑏𝑐 . 

 

 

3.4.1 Local Similarity Sort (LSS) 

 

This technique sorts all the local similarities and selects the top 𝑛𝑃; let 𝑃 be the 

set of selected 𝑛𝑃  minutiae-index pairs: 

 

𝑃 =   𝑟𝑡 , 𝑐𝑡  , 𝑡 = 1, … , 𝑛𝑃 , 1 ≤ 𝑟𝑡 ≤ 𝑛𝐴 , 1 ≤ 𝑐𝑡 ≤ 𝑛𝐵  (3.22) 

 

the global score is calculated as the average of the corresponding local similarities: 

 

𝑆 𝐴, 𝐵 =
 Γ 𝑟, 𝑐  𝑟 ,𝑐 ∈𝑃

𝑛𝑃
 (3.23) 
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The value of 𝑛𝑃  is not an overall constant, since it partially depends on the number of 

minutiae in the two templates: 

 

𝑛𝑃 = 𝑚𝑖𝑛𝑛𝑃
+    Ζ min{𝑛𝐴 , 𝑛𝐵} , 𝜇𝑃 , 𝜏𝑃  ⋅  𝑚𝑎𝑥𝑛𝑝

− 𝑚𝑖𝑛𝑛𝑝
    (3.24) 

 

where 𝜇𝑃 , 𝜏𝑃, 𝑚𝑖𝑛𝑛𝑃
, and 𝑚𝑎𝑥𝑛𝑝

 are parameters, and Ζ is the sigmoid function defined 

in (3.5), and   ⋅   denotes the rounding operator. 

 

3.4.2 Local Similarity Assignment (LSA) 

 

The Hungarian algorithm [82] is used to solve the linear assignment problem on 

matrix Γ, that is to find the set of 𝑛𝑃  pairs 𝑃 =   𝑟𝑖 , 𝑐𝑖   that maximizes 𝑆 𝐴, 𝐵  in 

(3.23) without considering the same minutia more than once (note that this is not 

guaranteed by LSS). The value of 𝑛𝑃  and the global score are calculated as in (3.24) and 

(3.23), respectively. 

 

3.4.3 Local Similarity Sort with Relaxation (LSS-R) 

 

This technique is inspired from the relaxation approach initially proposed in [83] 

and recently applied to triangular minutiae structures in [70]. The basic idea is to 

iteratively modify the local similarities based on the compatibility among minutiae 

relationships. In particular, given a pair of minutiae  𝑎, 𝑏 , if the global relationships 

among 𝑎 and some other minutiae in 𝐴 are compatible with the global relationships 

among 𝑏 and the corresponding minutiae in 𝐵, then the local similarity between 𝑎 and 𝑏 

is strengthened, otherwise it is weakened. 

As a preliminary step, 𝑛𝑅  pairs  𝑟𝑡 , 𝑐𝑡  are selected using the LSS technique, with 

𝑛𝑅 = min 𝑛𝐴, 𝑛𝐵  (usually 𝑛𝑅 ≫ 𝑛𝑃). 

Let 𝜆𝑡
0 = Γ 𝑟𝑡 , 𝑐𝑡  be the initial similarity of pair 𝑡; the similarity at iteration 𝑖 of the 

relaxation procedure is: 
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𝜆𝑡
𝑖 = 𝑤𝑅 ⋅ 𝜆𝑡

𝑖−1 +  1 − 𝑤𝑅 ⋅

  𝜌 𝑡, 𝑘 ⋅
𝑛𝑅
𝑘=1
𝑘≠𝑡

𝜆𝑘
𝑖−1 

 𝑛𝑅 − 1 
 

(3.25) 

 

where 𝑤𝑅 ∈  0,1  is a weighting factor and 

 

𝜌 𝑡, 𝑘 =  Ζ 𝑑𝑖 , 𝜇𝑖
𝜌

, 𝜏𝑖
𝜌
 

3

𝑖=1

 

𝑑1 =  𝑑𝑆 𝑎𝑟𝑡
, 𝑎𝑟𝑘

 − 𝑑𝑆 𝑏𝑐𝑡
, 𝑏𝑐𝑘

    

𝑑2 =  𝑑𝜙  𝑑𝜃 𝑎𝑟𝑡
, 𝑎𝑟𝑘

 , 𝑑𝜃 𝑏𝑐𝑡
, 𝑏𝑐𝑘

     

𝑑3 =  𝑑𝜙  𝑑𝑅 𝑎𝑟𝑡
, 𝑎𝑟𝑘

 , 𝑑𝑅 𝑏𝑐𝑡
, 𝑏𝑐𝑘

     

(3.26) 

 

𝜌 𝑡, 𝑘  is a measure of the compatibility between two pairs of minutiae: minutiae 

 𝑎𝑟𝑡
, 𝑎𝑟𝑘

  of template 𝐴 and minutiae  𝑏𝑐𝑡
, 𝑏𝑐𝑘

  of template 𝐵. The compatibility value 

is based on the similarity between three features that are invariant for rotation and 

translation (see Figure 3.7); it is calculated as the product of three terms: 𝑑1, 𝑑2, and 𝑑3, 

which are normalized by means of sigmoid functions (3.5) with specific parameters. 𝑑1 

denotes the similarity between the minutiae spatial distances, 𝑑2 compares the 

directional differences, and 𝑑3 compares the radial angles. The radial angle is defined 

as the angle subtended by the edge connecting the two minutiae and the direction of the 

first one (Figure 3.7): 

 

𝑑𝑅 𝑚1, 𝑚2 = 𝑑𝜙 𝜃𝑚1
, atan2 𝑦𝑚2

− 𝑦𝑚1
, 𝑥𝑚2

− 𝑥𝑚1
   (3.27) 

 

𝑛𝑟𝑒𝑙  iterations of the relaxation procedure are executed on all the 𝑛𝑅  pairs; then, 

similarly to [70], the efficiency of pair 𝑡 is calculated as: 

 

𝜀𝑡 =
𝜆𝑡

𝑛𝑟𝑒 𝑙

𝜆𝑡
0  (3.28) 
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Figure 3.7 - An example of the global relationships considered in the relaxation procedure. The 

similarity 𝜆1
𝑖  between minutiae 𝑎1 and 𝑏1 is modified according to: i) the compatibility between 

the global relationships 𝑎1 ↔ 𝑎2 and 𝑏1 ↔ 𝑏2 (𝜌 1,2 ), ii) the compatibility between 𝑎1 ↔ 𝑎3 

and 𝑏1 ↔ 𝑏3 (𝜌 1,3 ). The three invariant features used to calculate 𝜌 𝑡, 𝑘  are graphically 

highlighted: i) the spatial distances (dashed black lines), ii) the directional differences (gray 

angles with dashed border), and iii) the radial angles (gray angles with dotted border). 

 

Intuitively, a high efficiency is achieved for the pairs of minutiae whose similarity is 

substantially strengthened because of high compatibility with other pairs, whereas pairs 

of local structures that initially obtained a high similarity by chance, will be penalized 

by the relaxation process and their final efficiency will be quite low.  

To determine the global score, the 𝑛𝑃  pairs with the largest efficiency are selected from 

the 𝑛𝑅  pairs (the value of 𝑛𝑃  is calculated as in (3.24)). The global score is computed as 

in (3.23), but using the relaxed similarity values 𝜆𝑡
𝑛𝑟𝑒𝑙  instead of the values in matrix Γ. 

 

3.4.4 Local Similarity Assignment with Relaxation (LSA-R) 

 

This technique is identical to the previous one (LSS-R), except that, in the 

preliminary step, the 𝑛𝑅  pairs  𝑟𝑡 , 𝑐𝑡  are selected with the LSA technique. The 

computation of the final score is identical to LSS-R as well: it is a simple average of the 

relaxed similarities 𝜆𝑡
𝑛𝑟𝑒𝑙  of the 𝑛𝑃  pairs with the largest efficiency. 

𝑎1 

𝑎3 

𝑎2 
𝑑𝑆 𝑎1 , 𝑎2  

𝑑𝑆 𝑎1 , 𝑎3  

𝑑𝜃 𝑎1 , 𝑎2  

𝑑𝜃 𝑎1 , 𝑎3  

𝑑𝑅 𝑎1 , 𝑎2  

𝑑𝑅 𝑎1 , 𝑎3  

𝐴 

𝑏1 

𝑏2 

𝑏3 

𝑑𝑆 𝑏1 , 𝑏2  

𝑑𝑆 𝑏1 , 𝑏3  

𝑑𝜃 𝑏1 , 𝑏2  
𝑑𝜃 𝑏1 , 𝑏3  

𝑑𝑅 𝑏1 , 𝑏2  

𝑑𝑅 𝑏1 , 𝑏3  

𝐵 



 

Biometric Fingerprint Recognition Systems 

88  

 

 

3.5 Experimental Evaluation 

 

In this section, in order to evaluate accuracy and efficiency of MCC, experiments 

aimed at comparing it with minutiae-only implementations of three well-known local 

minutiae matching methods [43] [44] [49] are reported. 

 

3.5.1 Benchmark Datasets 

 

In a first battery of experiments, all the algorithms have been extensively 

evaluated on five datasets (DS2a, DS2b, DS2c, DS2d, DS2e) of ISO/IEC 19794-2 

templates, derived from the fingerprint images in FVC2006 [85] DB2.These datasets 

have been obtained using five ISO-compliant minutiae extractors (identified in the 

following by the letters a, b, c, d, e) provided by five of the best-performing FVC2006 

participants. Figure 3.8 shows a fingerprint from FVC2006 DB2 with the five 

corresponding ISO templates. The choice of using FVC2006 DB2 as principal dataset is 

motivated by the fact that it was acquired with a large-area optical sensor of medium-

high quality, which is well-suited for the algorithms evaluated, since it allows a 

sufficiently-large number of minutiae to be extracted. However the same tests have been 

also performed on the other three FVC2006 databases; hence, in the following, the 

results are reported on a total of 20 datasets: DS[1-4][a-e] (the number denotes the 

corresponding FVC2006 database and the letter the minutiae extractor). Each dataset 

contains 1680 ISO/IEC 19794-2 templates, obtained from the 1680 fingerprints in the 

corresponding FVC2006 database (140 fingers and 12 impressions per finger, see [85]. 

Figure 3.9 shows a sample fingerprint from each FVC2006 database; note that DB1 was 

acquired with a small area-scanner at 250 dpi, which is not well-suited for minutiae 

extraction and matching: this explains why error rates on the corresponding datasets 

DS1[a-e] are high, not only for MCC, but also for the other minutiae-only algorithms it 

is compared against, see Subsection 3.5.4.  

In all the datasets, minutiae coordinates are encoded at 500 dpi. 
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3.5.2 Algorithms Evaluated 

 

Three versions of MCC and three minutiae-only implementations of well-known 

algorithms have been compared on the 20 datasets: 

 MCC16 – MCC with 𝑁𝑆 = 16 (see Table 3.2); 

 MCC16b – MCC with 𝑁𝑆 = 16 and bit-based implementation (see Subsection 

3.3.4); 

 MCC8b – MCC with 𝑁𝑆 = 8 (see Table 3.2) and bit-based implementation; 

 Jiang – the local matching phase of the approach proposed in [43]; 

 Ratha – the local matching phase of the approach proposed in [44]; 

 Feng – the local matching phase of the approach proposed in [49]. 

Except for parameter 𝑁𝑆, all the three versions of MCC use the same parameter values 

(Table 3.2); these values have been initially calibrated on DB2d, since d is the most 

accurate of the five minutiae extractors, and then maintained steady for all the 19 

remaining datasets. As to the other three algorithms, the parameter values specified in 

the original papers have been used; for parameters whose values were not given in the 

original papers, optimal values have been determined on DB2d. The algorithms have 

been implemented as described in the corresponding papers, except for a few minor 

changes: 

 in Jiang and Ratha, the contribution of ridge-count information has been 

neglected, since this information (not mandatory in the ISO/IEC 19794-2 

template format) is not provided by any of the five extractors used in the 

experiments, and this work focuses on algorithms using only the mandatory 

information in the ISO/IEC 19794-2 format. 

 in Feng, a minimum number of minutiae (three) has been required for a minutiae 

neighborhood to be valid (according to our experiments, without this correction, 

its accuracy markedly drops); furthermore, since information on the fingerprint 

pattern area (required in the original algorithm, see [49]) is not available in 

ISO/IEC 19794-2 templates, the fingerprint pattern area is approximated with 

the minutiae convex hull which is also used in MCC (see Subsection 3.3.1). 

Both MCC and the other algorithms have been implemented in C#. 

Each of the six algorithms has been combined with each of the global-scoring 
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techniques described in Section 4: LSS, LSA, LSS-R, and LSA-R, thus obtaining a total 

of 24 matching approaches to be tested. 

 

Figure 3.8 - A fingerprint from FVC2006 DB2 and the corresponding ISO templates obtained 

by the five minutiae extractors (a-e). 

 

Figure 3.9 - A fingerprint from each FVC2006 database, at the same scale factor. 

DB1 

DB2 

DB3 

DB4 

c d e 

a b 
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Table 3.2 - Parameter Values. 

Parameter(s) Description Value 

𝑅  Cylinder radius (in pixel) 70 

𝑁𝑆   Number of cells along the cylinder diameter 
16 [MCC16(b)] 

8 [MCC8b] 

𝑁𝐷   Number of cylinder sections 6 

𝜍𝑆   Standard deviation in (3.7) 
28

3
  

𝜍𝐷   Standard deviation in (3.11) 
2

9
𝜋  

𝜇Ψ , 𝜏Ψ   Sigmoid parameters for function Ψ 
1

100
, 400 

Ω  Offset applied to enlarge the convex hull (in pixel) 50 

𝑚𝑖𝑛𝑉𝐶   
Minimum number of valid cells for a cylinder to be 

valid 

75% of the max. 

number of valid 

cells in a cylinder 

𝑚𝑖𝑛𝑀  
Minimum number of minutiae for a cylinder to be 

valid 
2 

𝑚𝑖𝑛𝑀𝐸   
Minimum number of matching elements in two 

matchable cylinders 

60% of the max. 

number of matching 

elements  

δ𝜃   
Maximum global rotation allowed between two 

templates 

𝜋

2
  

𝜇𝑃 , 𝜏𝑃  Sigmoid parameters in (3.24) 20, 
2

5
 

𝑚𝑖𝑛𝑛𝑝
, 𝑚𝑎𝑥𝑛𝑝

 Minimum and maximum number of minutiae in (3.24) 4, 12 

𝑤𝑅  Weight parameter in (3.25) 
1

2
  

𝜇1
𝜌

, 𝜏1
𝜌
  Sigmoid parameters for 𝑑1 in (3.26) 5, −

8

5
 

𝜇2
𝜌

, 𝜏2
𝜌
  Sigmoid parameters for 𝑑2 in (3.26) 

𝜋

12
, −30 

𝜇3
𝜌

, 𝜏3
𝜌
  Sigmoid parameters for 𝑑3 in (3.26) 

𝜋

12
, −30 

𝑛𝑟𝑒𝑙   Number of relaxation iterations for LSS-R and LSA-R 5 
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3.5.3 Test Protocol 

 

For each dataset, the FVC2006 testing protocol has been adopted: 

 each template is compared against the remaining templates of the same finger to 

obtain the False Non Match Rate (FNMR). If template 𝑇1 is compared against 

𝑇2, the symmetric comparison (i.e., 𝑇2 against 𝑇1) is not executed, to avoid 

correlation in the matching scores. The total number of genuine tests is: 
12×11

2
×

140 = 9240; 

 the first template of each finger is compared against the first template of the 

remaining fingers in the dataset, to determine the False Match Rate (FMR). If 

template 𝑇1 is compared to 𝑇2, the symmetric comparison (i.e., 𝑇2 against 𝑇1) is 

not executed, to avoid correlation in the scores. The total number of impostor 

tests is: 
140×139

2
= 9730. 

In case of failure to process or match templates, the corresponding matching scores are 

set to zero.  

For each algorithm and for each dataset, the following performance indicators are 

considered: 

 Equal-Error-Rate (EER) [26];  

 FMR1000 (the lowest FNMR for FMR ≤ 0.1%) [10]; 

 Average matching time, subdivided into: 

o Tcs: average time to create the local structures from an ISO/IEC 19794-2 

template; 

o Tls: average time to compute all the local similarities between the local 

structures obtained from two templates (i.e., to fill matrix Γ); 

o Tgs: average time to calculate the global score from the local similarities 

(i.e., from Γ); 

 Average memory size of the local structures created from a template, expressed 

in bytes. 
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3.5.4 Results: Accuracy 

 

Table 3.3 reports the EER and FMR1000 of all the algorithms, combined with the 

four global-scoring techniques, on DS2[a-e]. For each global-scoring technique, the best 

result on each dataset is highlighted in bold; the overall best EER and FMR1000 are 

underlined. The graphs in Figure 3.10 and Figure 3.11 report, for each global-scoring 

technique, the average EER and FMR1000 over the five datasets, respectively; Figure 

3.12 reports the DET graph on DS2d, using the LSA-R technique. 

 

Table 3.3 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB2 

(Percentage Values). 

 DS2a DS2b DS2c DS2d DS2e 

EER FMR 
1000 

EER FMR 
1000 EER FMR 

1000 EER FMR 
1000 EER FMR 

1000 

L
S

S
 

MCC16 2.07 5.35 1.44 3.34 6.62 21.23 0.46 1.02 2.69 7.70 
MCC16b 2.24 6.67 1.69 4.44 6.76 24.20 0.55 1.62 2.78 7.77 
MCC8b 2.28 7.12 1.73 5.23 7.54 26.43 0.59 1.92 2.88 8.34 

Jiang 5.37 16.50 6.50 13.82 16.48 38.33 3.23 7.72 8.82 19.69 
Ratha 9.11 34.72 11.68 39.73 18.68 51.28 7.78 32.20 10.93 37.33 
Feng 3.52 7.36 4.58 11.52 11.09 23.81 2.51 5.17 5.33 12.2 

L
S

A
 

MCC16 1.97 4.61 1.14 2.67 5.87 15.44 0.33 0.69 2.31 5.78 
MCC16b 2.07 5.70 1.35 3.46 6.18 15.95 0.44 1.07 2.36 6.35 
MCC8b 2.07 5.99 1.47 3.81 7.03 21.37 0.45 1.12 2.57 6.09 

Jiang 5.11 15.57 6.75 13.92 17.27 36.85 3.20 6.97 9.08 21.23 
Ratha 8.06 26.99 10.41 33.02 17.56 44.63 6.87 24.63 9.88 30.36 
Feng 3.42 6.83 4.36 10.44 11.09 22.38 2.17 4.45 5.18 11.02 

L
S

S
-R

 

MCC16 1.41 2.52 0.64 1.20 3.19 7.15 0.21 0.24 1.17 2.15 
MCC16b 1.41 2.60 0.64 1.23 3.33 7.60 0.22 0.27 1.19 2.23 
MCC8b 1.46 3.05 0.67 1.18 3.82 7.99 0.20 0.28 1.37 2.62 

Jiang 3.66 7.91 3.60 5.89 11.48 22.13 1.22 2.04 5.47 9.67 
Ratha 2.34 3.76 0.96 1.72 6.82 9.36 0.41 0.46 2.16 3.44 
Feng 3.27 5.76 4.35 9.25 11.11 22.44 2.03 3.66 5.39 11.02 

L
S

A
-R

 

MCC16 1.23 1.98 0.48 0.73 2.98 5.91 0.15 0.18 1.04 2.04 
MCC16b 1.21 1.97 0.47 0.90 3.06 6.17 0.17 0.18 1.08 2.07 
MCC8b 1.23 2.14 0.59 0.89 3.66 7.11 0.18 0.25 1.28 2.41 

Jiang 4.06 7.98 3.54 6.40 11.00 20.83 1.22 2.02 5.12 9.56 
Ratha 2.91 5.10 1.12 1.93 8.03 10.94 0.49 0.58 2.78 4.42 
Feng 3.01 5.44 4.19 8.67 11.12 21.02 1.78 3.17 5.25 9.72 

 

It is worth noting that the best result is always achieved by one of the three versions of 

MCC and that any of the three versions is always more accurate than the other 
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algorithms, except on DS2c with the LSS technique, where the FMR1000 of Feng 

(23.81%) is lower than that of MCC16b and MCC8b (24.20% and 26.43%, 

respectively). The overall best result is achieved by MCC16 on DS2d using the LSA-R 

technique (EER=0.15%, FMR1000=0.18%); this result would put MCC16 at the ninth 

place in the ranking of the FVC2006 Open Category and at the second place in the 

Light Category (see [85]). Considering that FVC2006 algorithms do not rely only on 

ISO/IEC 19794-2 minutiae information, but typically exploit other features (e.g. 

orientation field, ridge density, etc.), the accuracy obtained by MCC16 is definitely very 

good. It is also worth noting that the accuracy drop of MCC bit-based implementations 

(with respect to the MCC normal implementation) is very limited. 

 

Figure 3.10 - Average EER over the five datasets DS2[a-e], for each of the four global-scoring 

techniques. 

 

Figure 3.11 Average FMR1000 over the five datasets DS2[a-e], for each of the four global-

scoring techniques. 
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Figure 3.12 - DET graph of the six algorithms on DS2d, using LSA-R. 

 

Table 3.4, Table 3.5 and Table 3.6 report the EER and FMR1000 of all the algorithms, 

combined with the four global-scoring techniques, on DS[1,3,4][a-e]. In each table, for 

each global-scoring technique, the best result on each dataset is highlighted in bold and 

the overall best EER and FMR1000 are underlined. The corresponding graphs in Figure 

3.13, Figure 3.15, Figure 3.17 and Figure 3.14, Figure 3.16, Figure 3.18 report the 

average EER and FMR1000, respectively. Note that, also in each of these datasets, the 

most accurate results are always achieved by one of the three versions of MCC; the 

superiority of MCC is well evident from the graphs, which show how the average error 

rates are always below those of the other algorithms. As to the four proposed global 

scoring techniques, from the experiments it is evident that: 

 as expected, the consolidation stage markedly increases the accuracy; however 

MCC (and sometimes Feng) achieves a good accuracy even without 

consolidation;  

 the use of the Hungarian algorithm to optimally solve the assignment algorithm, 

in spite of the computational overhead, leads to a small accuracy improvement 

and therefore its adoption is not advised when efficiency is a concern. 
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Table 3.4 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB1 

(Percentage Values). 

 DS2a DS2b DS2c DS2d DS2e 

EER FMR 
1000 

EER FMR 
1000 EER FMR 

1000 EER FMR 
1000 EER FMR 

1000 

L
S

S
 

MCC16 17.57 56.13 15.08 44.41 25.77 68.24 14.96 41.12 17.72 47.96 
MCC16b 18.22 58.27 15.73 51.31 26.20 70.05 15.49 42.35 18.03 49.78 
MCC8b 18.46 59.19 16.23 51.95 26.80 74.87 15.21 45.78 18.96 53.41 

Jiang 31.58 85.30 26.74 71.57 32.17 84.18 23.95 73.28 26.73 75.50 
Ratha 43.14 99.57 34.44 99.41 35.52 92.15 28.58 98.43 30.31 90.22 
Feng 24.64 57.40 22.67 56.82 36.61 75.18 20.49 48.68 24.11 60.53 

L
S

A
 

MCC16 17.43 53.67 15.20 42.71 27.01 65.39 14.77 39.13 18.20 47.40 
MCC16b 18.03 55.77 15.67 46.37 27.35 67.48 15.12 39.02 18.61 48.05 
MCC8b 18.17 56.36 16.27 50.81 27.91 71.63 15.01 41.34 19.29 50.77 

Jiang 32.24 85.30 26.64 70.48 31.73 84.12 24.61 72.14 26.61 72.97 
Ratha 42.83 99.08 34.10 97.50 34.67 89.91 31.62 98.04 29.72 84.21 
Feng 24.63 58.08 22.67 56.18 36.61 75.21 20.42 49.15 24.11 60.68 

L
S

S
-R

 

MCC16 14.53 41.14 13.69 32.20 25.29 60.14 12.63 28.28 16.90 38.85 
MCC16b 14.59 40.88 14.02 32.29 25.57 60.41 12.81 28.03 17.21 39.35 
MCC8b 14.92 42.06 14.42 32.92 25.86 61.48 12.64 28.20 17.42 39.57 

Jiang 27.68 70.66 23.74 57.38 32.26 78.10 20.64 59.88 25.08 63.20 
Ratha 27.32 52.12 23.82 43.29 34.39 64.87 20.84 39.85 27.40 47.70 
Feng 24.67 57.99 22.67 55.57 36.61 75.15 20.49 49.02 24.11 61.49 

L
S

A
-R

 

MCC16 14.17 38.38 13.51 30.58 25.50 58.16 12.36 27.37 16.90 38.39 
MCC16b 14.19 39.24 13.81 32.83 25.92 59.31 12.49 27.70 17.36 40.20 
MCC8b 14.78 40.41 14.66 33.16 26.72 59.97 12.65 27.65 17.40 39.03 

Jiang 27.11 68.54 23.65 56.81 31.81 78.68 20.47 59.50 24.82 63.85 
Ratha 35.19 56.19 28.93 45.49 33.68 66.31 27.16 42.76 27.73 46.98 
Feng 24.58 57.67 22.67 54.65 36.61 74.77 20.44 49.06 24.11 59.39 

 

 

Figure 3.13 - Average EER over the five datasets DS1[a-e], for each of the four global-scoring 

techniques. 
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Figure 3.14 - Average FMR1000 over the five datasets DS1[a-e], for each of the four global-

scoring techniques. 

 

Table 3.5 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB3 

(Percentage Values). 

 DS2a DS2b DS2c DS2d DS2e 

EER FMR 
1000 

EER FMR 
1000 EER FMR 

1000 EER FMR 
1000 EER FMR 

1000 

L
S

S
 

MCC16 7.81 26.82 7.62 20.73 12.27 37.94 4.96 13.41 7.42 19.89 
MCC16b 8.52 29.63 8.09 22.97 12.45 40.58 5.42 15.29 7.49 21.76 
MCC8b 8.78 29.92 8.57 23.24 14.04 49.17 5.47 14.83 8.47 33.82 

Jiang 15.91 49.90 18.91 48.23 22.34 59.58 11.34 37.18 16.16 42.22 
Ratha 25.99 68.93 27.91 87.77 28.13 79.09 20.11 67.32 22.74 74.24 
Feng 13.19 29.69 14.62 39.5 17.33 45.56 9.85 24.31 13.39 29.02 

L
S

A
 

MCC16 7.52 23.53 7.10 18.72 11.76 32.23 4.68 12.55 6.93 18.38 
MCC16b 8.15 25.89 7.64 20.02 11.87 31.17 5.05 13.60 7.14 18.70 
MCC8b 8.39 27.29 8.35 21.63 13.68 43.81 5.34 13.84 8.02 29.47 

Jiang 16.30 47.31 19.47 47.71 22.89 57.93 11.80 35.81 16.33 42.06 
Ratha 24.70 58.29 26.35 81.62 27.27 72.17 18.51 61.27 21.12 62.26 
Feng 12.50 28.58 14.44 36.92 17.33 44.98 9.63 23.33 13.39 27.98 

L
S

S
-R

 

MCC16 5.89 15.11 5.67 12.90 9.27 23.67 3.35 7.34 5.24 12.54 
MCC16b 5.93 15.23 5.83 12.97 9.33 24.17 3.47 7.86 5.44 12.39 
MCC8b 6.23 15.53 5.95 13.23 10.17 26.15 3.66 9.18 5.57 13.67 

Jiang 12.38 29.02 13.99 40.18 19.24 45.86 7.40 29.42 12.52 30.38 
Ratha 9.88 18.58 8.60 17.37 16.76 31.49 6.32 10.25 9.91 16.99 
Feng 12.08 23.82 14.52 33.37 17.33 45.18 9.87 19.69 13.39 27.81 

L
S

A
-R

 

MCC16 4.83 11.53 5.02 11.52 9.32 23.05 3.08 6.23 4.72 12.81 
MCC16b 4.87 11.86 5.18 11.55 9.49 22.53 3.06 6.14 4.71 12.05 
MCC8b 5.29 12.32 5.57 12.24 10.46 24.58 3.35 7.40 5.35 14.33 

Jiang 12.63 29.51 13.53 37.50 18.98 47.23 7.12 25.68 12.10 33.45 
Ratha 11.30 21.65 10.01 18.64 19.51 31.83 7.42 11.59 11.63 19.59 
Feng 11.76 22.21 14.34 32.17 17.33 44.29 9.64 18.31 13.39 26.41 
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Figure 3.15 - Average EER over the five datasets DS3[a-e], for each of the four global-scoring 

techniques. 

 

 

 

 

Figure 3.16 - Average FMR1000 over the five datasets DS3[a-e], for each of the four global-

scoring techniques. 
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Table 3.6 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB4 

(Percentage Values). 

 DS2a DS2b DS2c DS2d DS2e 

EER FMR 
1000 

EER FMR 
1000 EER FMR 

1000 EER FMR 
1000 EER FMR 

1000 

L
S

S
 

MCC16 7.67 32.60 10.24 36.46 19.86 67.07 5.51 22.15 7.58 26.56 
MCC16b 8.57 36.63 11.44 44.18 20.49 70.91 6.27 31.95 8.50 34.23 
MCC8b 8.84 42.07 11.81 44.59 21.16 72.26 6.54 33.03 9.04 34.56 

Jiang 19.36 64.30 23.12 71.28 31.55 82.00 13.65 48.30 15.13 55.20 
Ratha 28.65 94.99 28.88 91.48 37.06 94.74 19.71 83.02 20.44 80.76 
Feng 15.50 40.31 17.74 52.83 25.61 71.99 11.67 27.75 11.67 36.46 

L
S

A
 

MCC16 4.06 11.73 5.62 13.29 12.38 35.28 2.60 6.12 3.63 9.31 
MCC16b 4.28 10.66 5.78 13.98 12.41 35.76 2.57 6.93 3.78 9.37 
MCC8b 4.43 11.94 6.04 15.20 13.23 38.02 2.83 6.88 3.93 9.47 

Jiang 11.72 27.36 17.23 42.15 27.25 62.31 6.78 14.98 8.86 20.33 
Ratha 7.45 15.70 10.63 22.58 22.73 40.15 4.77 8.63 6.63 12.62 
Feng 14.24 29.50 17.71 44.72 25.61 65.47 9.57 20.39 11.57 28.66 

L
S

S
-R

 

MCC16 6.66 27.87 9.04 30.49 18.65 62.36 5.03 17.88 6.64 21.99 
MCC16b 7.51 33.67 10.00 37.15 19.23 65.79 5.65 24.08 7.32 28.55 
MCC8b 7.80 34.88 10.32 38.71 20.04 68.60 5.93 26.00 7.87 27.75 

Jiang 18.88 60.36 22.21 64.62 32.17 80.20 13.35 43.78 14.90 51.36 
Ratha 27.24 92.91 27.02 89.78 36.38 94.69 18.08 76.26 18.76 76.61 
Feng 14.02 37.27 17.66 50.71 25.61 65.49 10.57 25.54 10.93 32.80 

L
S

A
-R

 

MCC16 3.09 8.12 4.91 11.74 11.77 28.21 2.10 4.60 2.95 6.94 
MCC16b 3.17 7.97 5.00 12.23 11.84 29.41 2.27 4.45 2.97 7.04 
MCC8b 3.52 9.74 5.44 14.30 12.99 32.23 2.46 5.31 3.23 8.51 

Jiang 11.48 27.96 16.45 40.15 26.37 62.58 6.58 14.48 8.39 20.09 
Ratha 9.66 18.60 13.30 27.06 26.68 45.64 5.92 9.44 8.51 13.94 
Feng 13.24 29.92 17.52 41.80 25.61 62.85 9.01 17.74 10.72 24.13 

 

 

Figure 3.17 - Average EER over the five datasets DS4[a-e], for each of the four global-scoring 

techniques. 
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Figure 3.18 - Average FMR1000 over the five datasets DS4[a-e], for each of the four global-

scoring techniques. 

 

3.5.5 Results: Efficiency 

 

Table 3.7 reports the average matching times measured over all the 20 datasets: 

note that four columns are reported for Tgs, since it depends on the specific global-

scoring technique used. From the table, the following observations may be made. 

 The average time taken by MCC to create the local structures from an ISO/IEC 

19794-2 template (Tcs) is within 4.2ms and 21ms. As it was reasonable to 

expect, this time is higher than in the other algorithms, however I believe this 

does not limit the applicability of MCC, for the following reasons: i) according 

to our experience (and having in mind the high margin for code optimization), 

even if this step would be implemented on very light architectures, the 4.2ms of 

MCC8b should not become more than one second; ii) match-on-card solutions 

would not need to perform the cylinder computation at verification time; in fact, 

the cylinder-set of the acquired fingerprint may be computed on the PC and the 

template stored inside the smart-card may already contain the cylinder-set pre-

computed at enrollment stage; iii) in identification (one-to-many) applications, 

cylinder-set needs to be pre-computed only once for each template and not at 

each comparison. 

 MCC8b exhibits the lowest local similarity computation time (the average Tls is 

0.3ms): note that this time refers to a C# implementation, without any assembly-
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language or hardware-oriented optimization that the bit-based nature of the 

similarity measure could allow. 

 The average time taken to calculate the global score (Tgs) in general does not 

depend on the specific local matching algorithm, with a noticeable exception: 

the techniques based on the assignment problem (LSA and LSA-R) are 

definitely faster when coupled to Feng; this may be due to the specific 

distribution of local similarities produced by such an algorithm that, on the 

average, requires less iterations of the Hungarian method. 

 To provide a reference, the average matching time over the four databases of the 

top ten FVC2006 participants is much higher than MCC: 416ms for the Open 

Category and 53ms for the Light Category. However a direct comparison is not 

feasible, since times reported in FVC2006 corresponds to ―template against 

image‖ matching and therefore include one feature extraction which is a time 

demanding task (see [85] and [10]). 

Table 3.8 shows, for each algorithm, the average memory size of the local structures 

created from an ISO/IEC 19794-2 template: the average has been calculated over all the 

20 datasets. The memory size is reported considering both raw format and compression 

with two general-purpose lossless compression techniques: rar [86] and zip [87]. It is 

worth noting that: 

 MCC16 require a considerable amount of memory because it encodes cell values 

as floating point data and therefore it is not suitable to run on resource-limited 

platforms. This is not the case of MCC16b and MCC8b; 

 without any compression, the local structures of MCC16b and MCC8b, although 

larger than those of Jiang and Feng, can be stored and managed into a typical 

smart card; 

 the local structures of MCC16b and MCC8b can be compressed much more than 

the others, probably due to their bit-based composition: once compressed, the 

local structure size of MCC8b is comparable to that of Jiang and Feng; 

 the average template size of the top ten FVC2006 participants is: 4478 bytes for 

the Open Category (hence higher than MCC8b) and 1175 bytes for the Light 

Category (not far from MCC8b). 
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Table 3.7 - Average Matching Times Over All Datasets (milliseconds). 

 
Tcs Tls 

Tgs 

LSS LSA LSS-R LSA-R 

MCC16 21.0 21.0 0.5 4.3 2.7 4.7 

MCC16b 17.3 1.2 0.5 4.3 2.8 4.7 

MCC8b 4.2 0.3 0.5 4.2 2.9 4.8 

Jiang 1.0 0.8 0.4 4.3 2.6 4.1 

Ratha 1.0 250.7 0.5 4.3 2.8 4.4 

Feng 0.2 12.3 0.5 2.4 2.8 3.1 

 

Table 3.8 - Average Memory Size of the Local Structures, Over All Datasets, Measured in 

Bytes. 

 
Raw format Compressed format (rar) Compressed format (zip) 

Size Size Ratio Size Ratio 

MCC16 209253 103766 202% 104595 200% 

MCC16b 7630 1457 524% 1642 465% 

MCC8b 1913 605 316% 655 292% 

Jiang 1068 608 176% 647 165% 

Ratha 26543 19487 136% 20046 132% 

Feng 1428 567 252% 614 233% 

 

3.6 Conclusion 

 

In this chapter Minutia Cylinder-Code (MCC) has been introduced: a novel 

minutiae-only representation and matching technique for fingerprint recognition. MCC 

relies on a robust discretization of the neighborhood of each minutia into a 3D cell-

based structure named cylinder. Simple but effective techniques for the computation and 

consolidation of cylinder similarities are provided, to determine the global similarity 

between two fingerprints. 

In order to compare MCC with three well-known approaches, a systematic 

experimentation has been carried out, involving a total of 24 matching approaches (6 

algorithms and 4 global-scoring techniques) over 20 minutiae datasets extracted from 

FVC2006 databases, resulting in more than nine millions matching attempts. 
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Experimental results demonstrate that MCC is more accurate than well-known 

minutiae-only local matching techniques ([43] [44] [49]). MCC is also very fast and 

suitable to be simply coded in hardware, due to the bit-wise nature of the matching 

technique; this allows its porting on inexpensive secure platforms such as a smart-card 

or a system-on-a-chip. The new algorithms is so promising that a patent has been  filed 

on it. 

While in this work the problem of robustly and efficiently matching two fingerprints has 

been focused, I believe that the peculiarities of MCC also allow to develop new 

effective techniques for fingerprint indexing and template protection: these two issues 

are the main targets of our future research efforts. 
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4  

PERFORMANCE EVALUATION OF 

FINGERPRINT VERIFICATION SYSTEMS  

 

4.1 Introduction 

 

Although the accuracy of fingerprint-based biometric systems can be very high, 

no fingerprint recognition algorithm is perfect. Performance evaluation is important for 

all biometric systems and particularly so for fingerprint recognition, which is receiving 

widespread international attention for citizen identity verification and identification. The 

most-widely known performance evaluation efforts in this field are the Fingerprint 

Verification Competitions (FVC) [87] and the Fingerprint Vendor Technology 

Evaluation (FpVTE) [88]; other initiatives include the NIST SDK Testing [89] and the 

MINEX campaign aimed at evaluating interoperability [90]. Fortunately, controlled, 

scientific testing initiatives are not limited within the biometrics community to 

fingerprint recognition. Other biometric modalities have been the target of excellent 

evaluation efforts as well. The (U.S.) National Institute of Standards and Technology 

(NIST) has sponsored scientifically-controlled tests of text-independent speaker 

recognition algorithms [91] [92] for a number of years, and more recently of facial 

recognition technologies as well [93]. 

NIST and others have suggested [94] [95] that biometric testing can be classified into 

―technology‖, ―scenario‖ and ―operational‖ evaluations. ―Technology‖ evaluations test 

computer algorithms with archived biometric data collected using a ―universal‖ 

(algorithm-independent) sensor; ―Scenario‖ evaluations test biometric systems placed in 

a controlled, volunteer-user environment modelled on a proposed application; 

―Operational‖ evaluations attempt to analyze performance of biometric systems placed 

into real applications. Tests can also be characterized as ―on-line‖ or ―off-line‖, 

depending upon whether the test computations are conducted in the presence of the 
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human user (on-line) or after-the-fact on stored data (off-line). An off-line test requires 

a pre-collected database of samples and makes it possible to reproduce the test and to 

evaluate different algorithms under identical conditions. 

Off-line tests can be classified as follows (Figure 4.1): 

 In-house - self defined test: the database is internally collected and the testing 

protocol is self-defined. Generally the database is not publicly released, perhaps 

because of human-subject privacy concerns, and the protocols are not 

completely explained. As a consequence, results may not be comparable across 

such tests or reproducible by a third party; 

 In-house - existing benchmark: the test is performed over a publicly available 

database, according to an existing protocol. Results are comparable with others 

obtained using the same protocol on the same database. Besides the 

trustworthiness problem, the main drawback is the risk of overfitting the data - 

that is, tuning the parameters of the algorithms to match only the data specific to 

this test. In fact, even if the protocol defines disjoint training, validation, and test 

sets, the entire evaluation (including learning) might be repeated a number of 

times to improve performance over the final test set. Examples of recent 

biometric evaluations of this type are [96] and [97]; 

 Independent - weakly supervised: the database is sequestered and is made 

available just before the beginning of the test. Samples are unlabelled (the 

filename does not carry information about the sample’s owner identity). The test 

is executed at the testee’s site and must be concluded within given time 

constraints. Results are determined by the evaluator from the comparison scores 

obtained by the testee during the test. The main criticism against this kind of 

evaluation is that it cannot prevent human intervention: visual inspection of the 

samples, result editing, etc., could be in principle carried out with sufficient 

resources. Examples of recent biometric evaluations of this type are: [98], [91] 

and [99]. 

 Independent - supervised: this approach is very similar to the independent 

weakly supervised evaluation but here the test is executed at the evaluator’s site 

on the testee’s hardware. The evaluator can better control the evaluation but: i) 

there is no way to compare computational efficiency (i.e., different hardware 



 

Biometric Fingerprint Recognition Systems 

106  

 

systems can be used); ii) some interesting statistics (e.g., template size, memory 

usage) cannot be obtained; iii) there is no way to prevent score normalization 

and template consolidation [9] [100] (i.e., techniques where information from 

previous comparisons are unfairly exploited to increase the accuracy in 

successive comparisons). Examples of recent biometric evaluations of this type 

are [93] and [88]; 

 Independent - strongly supervised: data are sequestered and not released before 

the conclusion of the test. Software components compliant to a given 

input/output protocol are tested at the evaluator’s site on the evaluator’s 

hardware. The tested algorithm is executed in a totally-controlled environment, 

where all input/output operations are strictly monitored. The main drawbacks are 

the large amount of time and resources necessary for the organization of such 

events. Examples of recent biometric evaluations of this type are [26], [101], 

[102] and, the FVC2006 [4] [5] [85] and FVC-onGoing [103] [104] evaluation 

discussed in this chapter. 

 

 
Figure 4.1 - Classification of off-line biometric evaluations. 

 

FVC2006 follows FVC2000 [105] [26], FVC2002 [106] [101] and FVC2004 [107] 

[108], the first three international Fingerprint Verification Competitions organized by 

the authors in the years 2000, 2002 and 2004 with results presented at the 15
th
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International Conference on Pattern Recognition (ICPR), the 16
th

 ICPR and the 1
st 

International Conference on Biometric Authentication (ICBA), respectively. The 

previous contests received significant attention from both academic and commercial 

organizations. Several research groups have used FVC2000,  FVC2002 and FVC2004 

datasets for their own experiments and some companies not participating in the original 

competitions later requested the organizers to measure their performance against the 

FVC2000, FVC2002 and/or FVC2004 benchmarks. Beginning with FVC2002, to 

increase the number of companies and therefore to provide a more complete overview 

of the state-of-the-art, anonymous participation was allowed. Table 4.1 compares the 

four competitions from a general point of view, highlighting the main differences. 

FVC2006 was extensively publicized starting in March 2006 with the creation of the 

FVC2006 web site [85]. All companies and research groups in the field known to the 

authors were invited to participate in the contest. All participants in the past FVC 

competitions were informed of the new evaluation. FVC2006 was also announced 

through mailing lists and biometric-related on-line magazines. Four new databases were 

collected using three commercially available scanners and the synthetic fingerprint 

generator SFinGe [109] [110] [9] (see Section 4.2). A representative subset of each 

database (sets B: 120 fingerprints from ten fingers) was made available to the 

participants prior to the competition for algorithm tuning to accommodate the image 

size and the variability of the fingerprints in the databases. 

Two different sub-competitions (Open category and Light category) were organized 

using the same databases. Each participating group was allowed to submit one 

algorithm in each category. The Light category was intended for algorithms 

characterized by low computational resources, limited memory usage and small 

template size (see Section 4.3). 

By the June 30th, 2006 registration deadline, 150 registrations had been received. All 

registered participants received the training subsets and detailed instructions for 

algorithm submission. By the October 31st, 2006 deadline for submission, a total of 70 

algorithms from 53 participating groups had been received (Table 4.2). Once all the 

executables were submitted to the evaluators, feedback was sent to the participants by 

providing them with the results of their algorithms over sets B (the same data set they 

had previously been given for algorithm tuning), thus allowing them to verify that run-

time problems were not occurring on the evaluator side. Four algorithms from two 
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participants (P030 and P144) were disqualified, since they were attempting to cheat by 

gaining additional information from the file names to improve their  matching 

performance. 

 

 

Table 4.1 - The four Fingerprint Verification Competitions: A summary. 

 FVC2000 FVC2002 FVC2004 FVC2006 

Call for 

participation 
November, 1999 October, 2001 April, 2003 March, 2006 

Registration 

deadline 
March 1st, 2000 January 10th, 2002 October 15th, 2003 June 30th, 2006 

Submission 

deadline 
June 1st, 2000 March 1st, 2002 November 30th, 2003 October 31st, 2006 

Evaluation 

period 
July–August, 2000 April–July, 2002 January–February 2004 January–February 2007 

Anonymous 

participation 
Not allowed Allowed 

Categories - Open and Light 

Registered 

participants 
25 (15 withdrew) 48 (19 withdrew) 110 (64 withdrew) 150 (97 withdrew) 

Algorithms 

evaluated 
11 31 

Open Category: 41 

Light Category: 26 

Open Category: 44 

Light Category: 26 

Presentation 

of the results 
15th ICPR 16th ICPR [101] 1st ICBA [108] BIOSECURE Project [5] 

Databases Four new databases, each one containing: set A (100x8) and set B (10x8) 
Set A (140x12)  

set B (10x12) 

DB1 Optical Optical Optical Electric Field 

DB2 Capacitive Optical Optical Optical 

DB3 Optical Capacitive Thermal-sweeping Thermal-sweeping 

DB4 Synthetic (SFinGe v2.0) 
Synthetic (SFinGe 

v2.51) 
Synthetic (SFinGe v3.0) 

Synthetic (SFinGe 

v3.0) 

Databases 

availability 

DVD accompanying ―Handbook of Fingerprint 

Recognition‖ [9] 

http://biometrics.cse.msu

. 

edu/fvc04db 

Not available yet 

Website http://bias.csr.unibo.it/fvc200{0|2|4|6} 

HW/SW 

Pentium III (450 MHz) 

Windows NT 

FVC Test suite v1.0 

Pentium III (933 MHz) 

Windows 2000 

FVC Test suite v1.2 

Athlon 1600+ (1,41 

GHz) 

Windows XP 

FVC Test suite v2.0 

Pentium IV (3,20Ghz) 

Windows XP 

FVC Test suite v2.1 

 

 

The rest of this chapter is organized as follows: Section 4.2 describes data collection 

procedure and shows examples of the fingerprints included in the four databases. 

Section 4.3 introduces the testing protocol with particular emphasis on the test 

procedures, the performance indicators used, and the treatment of failures and in Section 

4.4, results of the top algorithms are reported.  
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Table 4.2 - The 53 FVC2006 participants: 17 of them submitted two algorithms (one for each 

category), 27 participated only in the Open category and 9 participated only in the Light 

category. The two struck-out rows denote participants that were disqualified due to unfair 

behaviour of their algorithms. 

ID Type Open Light  ID Type Open Light 

P006 Academy    P090 Industry   

P009 Independent developer    P092 Industry   

P015 Industry    P095 Academy  

P017 Industry    P096 Industry  

P022 Industry    P097 Industry  

P024 Industry    P098 Academy  

P030 Independent developer    P101 Independent developer   

P036 Academy    P103 Independent developer   

P041 Independent developer    P106 Academy  

P045 Industry    P109 Industry  

P050 Academy    P118 Academy  

P052 Academy    P119 Academy  

P053 Independent developer    P120 Industry  

P054 Independent developer    P121 Independent developer   

P058 Industry    P122 Independent developer   

P060 Independent developer    P123 Academy   

P065 Independent developer    P124 Industry  

P066 Industry    P129 Industry   

P067 Industry    P131 Academy   

P072 Industry    P133 Industry   

P073 Academy    P138 Academy   

P074 Industry    P141 Independent developer   

P081 Industry    P143 Industry   

P083 Industry    P144 Industry   

P085 Academy    P148 Industry  

P088 Industry    P151 Industry  

     P153 Industry  

 

 

4.2 Databases 

 

Four databases created using three different scanners and the SFinGe synthetic 

generator [109] [110] [9] were used in the FVC2006 benchmark (see Table 4.3). Figure 

4.2 shows an example image at the same scale factor from each database. 

Data collection in FVC2006 was performed without deliberately introducing difficulties 
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such as exaggerated distortion, large amounts of rotation and displacement, wet/dry 

impressions, etc. (as it was done in the previous editions), but the population is more 

heterogeneous and also includes manual workers and elderly people. The volunteers 

were simply asked to put their fingers naturally on the acquisition device, but no 

constraints were enforced to guarantee a minimum quality in the acquired images. The 

final datasets were selected from a larger database by choosing the most difficult fingers 

according to the NIST quality index, to make the benchmark sufficiently difficult for a 

technology evaluation. 

 

 

 

Table 4.3 - Scanners/technologies used for collecting the databases. 

 Technology Image Resolution 

DB1 Electric Field Sensor (AuthenTec) 9696 250 dpi 

DB2 Optical Sensor (BiometriKa) 400560 569 dpi 

DB3 Thermal Sweeping Sensor (Atmel) 400500 500 dpi 

DB4 Synthetic Generator (SFinGe v3.0) 288384 About 500 dpi 

 

 

 

 

 

Figure 4.2 - A fingerprint image from each database, at the same scale factor. 

 

 

 

DB2 

DB3 

DB4 

DB1 
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4.3 Test protocol 

 

4.3.1 Test procedure 

 

Participants submitted each algorithm in the form of two executable programs: the 

first for enrolling a fingerprint image and producing the corresponding template, and the 

second for comparing a fingerprint template to a fingerprint image and producing a 

comparison score in the range  0,1 . The executables take the input from command-line 

arguments and append the output to a text file. The input includes a database-specific 

configuration file. For each database, participants were allowed to submit a distinct 

configuration file to adjust the algorithm’s internal parameters (e.g. to accommodate the 

different image sizes). Configuration files are text or binary files and their I/O is the 

responsibility of the participant’s code. These files can also contain pre-computed data 

to save time during enrollment and comparison. Each algorithm is tested by performing, 

for each database, the following comparisons: 

 genuine recognition attempts: the template of each fingerprint image is 

compared to the remaining images of the same finger, but avoiding symmetric 

matches (i.e. if the template of image 𝑗 is matched against image 𝑘, template 𝑘 is 

not matched against image 𝑗); 

 impostor recognition attempts: the template of the first image of each finger is 

compared to the first image of the remaining fingers, but avoiding symmetric 

matches. 

Then, for each database:  

 a total of 1540 enrollment attempts are performed (the enrollment of the last 

image of any finger does not need to be performed); 

 if all the enrollments are correctly performed (no enrollment failures), the total 

number of genuine and impostor comparison attempts is 9240 and 9730, 

respectively. 

All the algorithms are tested at the evaluators’ site on evaluators’ hardware: the 

evaluation is performed in a totally-controlled environment, where all input/output 

operations are strictly monitored. This enables us to: 

 evaluate other useful performance indicators such as processing time, amount of 
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memory used, and template size (see Subsection 4.3.2); 

 enforce a maximum response time of the algorithms; 

 implement measures that guarantee algorithms cannot cheat (for instance 

matching filenames instead of fingerprints); 

 ensure that, at each comparison, one and only one template is matched against 

one and only one image and that techniques such as template consolidation 

[100] and score normalization [95] are not used to improve performance. 

The schema in Figure 4.3 summarizes the testing procedure of FVC2006. 

In the Open category, for practical testing reasons, the maximum response time of the 

algorithms was limited to 10 seconds for enrollment and 5 seconds for comparison; no 

other limits were imposed. 

In the Light category, in order to create a benchmark for algorithms running on light 

architectures, the following limits were imposed: 

 maximum time for enrollment: 0.3 seconds; 

 maximum time for comparison: 0.1 seconds; 

 maximum template size: 2 KBytes; 

 maximum amount of memory allocated: 4 MBytes. 

The evaluation (for both categories) was executed using Windows XP Professional O.S. 

PCs with Intel Pentium 4 at 3.20Ghz and 1GB of RAM. 

 

 

 

Figure 4.3 - Testing procedure. 

 

 Evaluator’s site 

Enroll 

executable 

Algorithm 

Sequestered 
database of 
fingerprint 

images 

Templates 
created by the 

algorithm 

Database-specific 
configuration file 

Other performance indicators: 

 Template size 

 Memory used 

 Processing times 

C
o

m
p
a
riso

n
  

sco
re

s 

Accuracy 
indicators: 
FMR, 
FNMR, 
EER 

Provided by the participant 

Compare 
executable 



 

Chapter 4: Performance Evaluation of Fingerprint Verification Systems 

113 

 

4.3.2 Performance evaluation 

 

For each database and for each algorithm, the following performance indicators 

were measured and reported: 

 genuine and impostor score histograms; 

 False Match Rate (FMR) and False Non-Match Rate (FNMR) graphs and 

Decision Error Tradeoff (DET) graph; 

 Failure-to-Enroll Rate and Failure-to-Compare Rate; 

 Equal Error Rate (EER), FMR100, FMR1000, ZeroFMR and ZeroFNMR; 

 average enrollment time and average comparison time; 

 maximum memory allocated for enrollment and for comparison; 

 average and maximum template size. 

A formal definition of FMR (False Match Rate), FNMR (False Non-Match Rate) and 

Equal Error Rate (EER) is given in [26]. Note that in single-attempt, positive 

recognition applications, FMR (False Match Rate) and FNMR (False Non-Match Rate) 

are often referred to as FAR (False Acceptance Rate) and FRR (False Rejection Rate), 

respectively. ZeroFMR is given as the lowest FNMR at which no False Matches occur 

and ZeroFNMR is the lowest FMR at which no False Non-Matches occur. 

FMR100 and FMR1000 are the values of FNMR for 𝐹𝑀𝑅 =
1

100
 and 

1

1000
, respectively. 

These measures are useful to characterize the accuracy of fingerprint-based systems, 

which are often operated far from the EER point using thresholds which reduce FMR at 

the cost of higher FNMR (see also Subsection 1.1.3). 

 

4.3.3 Treatment of failures 

 

An enrollment or comparison attempt can fail, thus resulting in a Failure-to-

Enroll (FTE) or Failure-to-Compare (FTC) error, respectively. Failures can be reported 

by the algorithm (which declares itself to be unable to process a given fingerprint), or 

imposed by the test procedure in the following cases: 

 timeout: the algorithm exceeds the maximum processing time allowed; 

 crash: the program crashes during its execution; 
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 memory limit: the amount of memory allocated by the algorithm exceeds the 

maximum allowed; 

 template limit (only for enrollment): the size of the template exceeds the 

maximum allowed; 

 missing template (only for comparison): the required template has not been 

created due to enrollment failure, such that the comparison cannot be performed. 

 

4.4 Results 

 

This section, after a structured overview of the algorithms (Subsection 4.4.1), 

reports: the results of the top algorithms in the two categories (Subsections 4.4.2 and 

4.4.3). Note that in the following graphs and tables, participant IDs (e.g. P001, P002) 

are used to denote the different algorithms. For instance, ―P001‖ indicates the algorithm 

submitted by participant P001; since many participants submitted two algorithms (one 

for each category), the same participant ID may refer to the Open category algorithm or 

to the Light category algorithm, according to the context. 

 

4.4.1 Overview of the algorithms 

 

Reporting low-level details about the approaches and techniques adopted by the 

participating algorithms would be unfeasible, since most of the participants are 

commercial entities and the details of their algorithms are proprietary. For this reason, 

as in FVC2004, all the participants had to provide a high-level structured description of 

their algorithms by answering a few questions about: 

 Pre-processing: Is segmentation (separation of the fingerprint area from the 

background) and/or image enhancement performed? 

 Alignment: Is alignment carried out before or during comparison? What kind of 

transformations are dealt with (displacement, rotation, scale, non-linear 

mapping)? 

 Features: Which features are extracted from the fingerprint images? 

 Comparison: Is the algorithm minutiae-based? If so, is minutiae comparison 
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global or local [9]? If not, what is the approach (correlation-based, ridge-pattern-

texture-based, ridge-line-geometry-based)? 

All the participants except P095 provided the requested data; Table 4.4 compares the 

algorithms by summarizing the main information. The two histograms in Figure 4.4 

highlight the distribution of the features adopted and of the matching approaches, 

respectively. Figure 4.5 and Figure 4.6 compare the two distributions with those of  

FVC2004. 

 

 

Table 4.4 - High-level description of the algorithms from 52 participants. Notes: P030 - Raw 

image parts and Correlation are used only in the Open category. P058 - Ridge counts is used 

only in the Open category. P101 - Ridge pattern (texture) and Correlation are used only in the 

Open category. P131 - alignment type is Non-linear in the Open category and Displacement + 

Rotation + Scale in the Light one; Ridge  Count is used only in the Light category, all the other 

bracketed elements only in the Open category.  P141 - alignment type is Non-linear in the Open 

category. P144 - Local ridge frequency and Texture measures are used only in the Open 

category. 
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Figure 4.4 - Histograms of the distribution of the different features (on the left) and of the 

different matching strategies (on the right) exploited by the algorithms. 

 

 

 

 

 
Figure 4.5 - Comparison between the features exploited by the algorithms in FVC2006 and 

FVC2004. 
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Figure 4.6 - Comparison between the matching approaches of the algorithms in FVC2006 and 

FVC2004. 

 

4.4.2 Open category - results on the four databases 

 

In the following, results from the top 15 algorithms on each of the four databases 

are reported for the Open category. Detailed results, of all the algorithms, are reported 

in the FVC2006 Web Site [85]. 
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P041 9.468 12.641 16.061 20.444 0.00 0.00 0.033 0.049 0.50 0.68 1808 2308 

 

Figure 4.7 - Open category – database 1: DET graph of the top 15 algorithms (according to 

EER). 

 

Table 4.6 - Open category - database 2: top 15 algorithms, sorted by EER. 
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P015 0.032 0.022 0.032 0.032 0.00 0.00 1.434 1.461 2.76 5.54 19744 24956 

P009 0.095 0.000 0.097 0.249 0.00 0.00 0.799 0.899 2.00 3.19 6228 6404 

P058 0.100 0.076 0.108 0.141 0.00 0.00 0.587 0.589 5.28 10.22 3644 3672 

P101 0.121 0.076 0.141 0.346 0.00 0.00 0.727 0.769 6.27 7.30 4208 7728 

P066 0.122 0.065 0.152 0.281 0.00 0.00 0.771 1.002 9.56 17.04 4728 7156 

P065 0.137 0.087 0.162 0.422 0.00 0.00 0.091 0.091 0.23 0.46 1924 1948 

P045 0.138 0.043 0.173 0.606 0.00 0.00 0.226 0.253 9.73 14.30 2304 3168 
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P022 0.290 0.216 0.411 0.898 0.00 0.00 0.655 0.666 1.93 1.93 3756 4676 

P090 0.374 0.335 0.552 7.900 0.00 0.00 0.141 0.085 0.72 1.01 1964 3104 

P024 0.474 0.368 0.682 100.000 0.00 0.00 0.214 0.146 2.36 3.46 3060 3836 
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Figure 4.8 - Open category – database 2: DET graph of the top 15 algorithms (according to 

EER). 

 

Table 4.7 - Open category - database 3: top 15 algorithms, sorted by EER. 
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P015 1.534 1.753 2.760 7.175 0.00 0.00 1.682 1.678 5.88 10.67 20324 25528 

P058 1.608 1.786 2.413 3.755 0.00 0.00 0.307 0.307 4.34 12.31 3272 3292 

P009 1.645 1.937 3.030 3.929 0.00 0.00 0.583 0.641 1.81 3.06 6020 6196 

P074 1.681 1.851 3.268 4.719 0.00 0.00 0.235 0.242 4.73 10.12 2376 2392 

P045 1.890 2.468 5.260 7.587 0.00 0.00 0.194 0.223 8.32 12.79 2276 3300 

P066 2.054 2.738 3.864 7.597 0.00 0.00 0.517 0.661 7.23 13.39 3648 6808 

P072 2.135 2.900 4.545 5.584 0.00 0.00 0.071 0.114 5.88 5.88 876 912 

P088 2.156 2.392 3.669 5.725 0.00 0.00 0.844 0.847 1.38 3.11 6844 8076 

P067 2.203 3.420 6.234 7.024 0.00 0.00 0.255 0.274 51.87 86.09 6644 6960 

P024 2.335 2.781 4.340 100.000 0.00 0.00 0.239 0.169 2.01 3.20 3924 4600 

P131 2.615 3.214 6.753 18.929 0.00 0.00 0.275 0.437 16.42 28.13 9528 8660 

P017 2.762 3.734 5.974 10.022 0.00 0.00 0.097 0.097 1.59 2.00 2348 2740 

P041 2.810 3.409 5.195 8.019 0.00 0.00 0.123 0.135 0.99 1.63 3716 4600 

P065 2.979 3.680 5.054 7.240 0.00 0.00 0.058 0.057 0.21 0.55 1828 1852 

P101 3.019 3.810 4.297 5.076 0.00 0.00 0.508 0.543 5.74 7.19 3896 7712 
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Figure 4.9 - Open category – database 3: DET graph of the top 15 algorithms (according to 

EER). 

 

Table 4.8 - Open category - database 4: top 15 algorithms, sorted by EER. 
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P009 0.269 0.141 0.400 0.703 0.00 0.00 0.564 0.601 1.69 2.43 5268 5436 

P074 0.453 0.368 0.823 1.732 0.00 0.00 0.230 0.238 5.04 8.51 2068 2084 

P066 0.466 0.465 0.855 2.045 0.00 0.00 0.725 1.023 7.21 11.00 3284 6688 

P015 0.627 0.595 0.952 1.450 0.00 0.00 1.085 1.113 2.51 5.44 17132 22316 

P101 0.691 0.693 0.942 2.229 0.00 0.00 0.636 0.679 6.39 7.51 3804 7728 

P131 0.701 0.671 0.974 17.251 0.13 0.07 0.185 0.291 16.45 30.29 7648 7216 

P045 0.759 0.714 1.883 10.411 0.00 0.00 0.146 0.178 8.43 12.45 1916 2664 

P088 0.891 0.877 1.699 3.712 0.00 0.00 1.528 1.549 1.64 4.63 3444 6620 

P058 0.991 0.996 1.959 3.398 0.00 0.00 0.292 0.294 3.88 8.23 2340 2368 

P017 1.112 1.147 1.677 3.907 0.00 0.00 0.072 0.073 1.52 1.97 1964 2152 

P090 1.218 1.299 2.262 3.690 0.00 0.00 0.088 0.055 0.50 0.75 1620 2620 

P072 1.345 1.558 2.976 6.894 0.00 0.00 0.045 0.074 3.30 3.30 792 828 

P024 1.350 1.483 2.879 100.000 0.32 0.65 0.133 0.109 1.93 2.76 2440 3136 

P041 1.486 1.591 2.857 100.000 0.32 0.65 0.062 0.080 0.95 1.32 2008 3012 

P067 1.570 2.348 4.740 5.823 0.00 0.00 0.197 0.244 40.68 55.78 4712 9740 
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Figure 4.10 - Open category – database 4: DET graph of the top 15 algorithms (according to 

EER). 

 

 

4.4.3 Light category - results on the four databases 

 

In the following, results from the top 15 algorithms on each of the four databases 

are reported for the Light category.  Detailed results, of all the algorithms, are reported 

in the FVC2006 Web Site [85]. 
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Table 4.9 - Light category - database 1: top 15 algorithms, sorted by EER. 
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P129 5.356 8.225 13.323 100.000 0.32 1.01 0.031 0.029 1.94 1.94 1860 2028 

P017 5.564 9.708 15.335 22.922 0.00 0.00 0.037 0.039 1.22 1.66 1472 2172 

P133 5.888 8.506 12.890 100.000 0.32 1.01 0.039 0.036 1.71 1.71 2888 3032 

P045 6.420 12.251 20.303 28.669 0.00 0.00 0.048 0.052 1.43 1.64 1328 1740 

P121 7.877 11.634 17.348 22.489 0.00 0.00 0.027 0.027 0.46 0.74 1412 1436 

P058 8.019 11.310 15.368 21.742 0.00 0.47 0.075 0.075 0.49 1.03 1532 1552 

P072 9.412 13.994 18.929 22.890 0.00 0.00 0.024 0.032 1.20 1.20 724 756 

P131 9.942 20.022 35.595 46.970 0.00 0.00 0.035 0.036 0.79 1.41 1404 1284 

P143 10.116 17.652 27.662 54.221 0.00 0.00 0.022 0.023 0.42 0.77 1008 1120 

P065 10.385 15.411 20.530 30.271 0.00 0.14 0.023 0.022 0.09 0.18 1196 1804 

P141 10.514 25.032 45.335 78.712 0.00 0.00 0.024 0.026 0.67 0.91 1000 1384 

P052 11.026 18.853 25.693 35.952 0.00 0.00 0.019 0.022 0.18 0.44 1080 1592 

P096 11.573 21.732 32.154 50.541 0.13 1.58 0.039 0.041 1.67 1.67 1172 1248 

P054 11.746 21.494 32.381 50.509 0.13 1.58 0.040 0.041 1.58 1.58 1172 1244 

P101 11.839 19.978 27.965 34.621 0.00 0.00 0.079 0.075 0.28 0.68 1700 2496 

 

 
Figure 4.11 - Light category – database 1: DET graph of the top 15 algorithms (according to 



 

Biometric Fingerprint Recognition Systems 

124  

 

EER). 

Table 4.10 - Light category - database 2: top 15 algorithms, sorted by EER. 
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P065 0.148 0.087 0.173 0.422 0.00 0.01 0.092 0.091 0.23 0.46 1924 1948 

P133 0.158 0.087 0.195 0.335 0.00 0.00 0.064 0.066 1.71 1.71 3272 3416 

P129 0.169 0.087 0.206 0.325 0.00 0.00 0.056 0.056 1.94 1.94 2236 2420 

P121 0.190 0.119 0.260 0.346 0.00 0.00 0.070 0.067 1.24 1.99 2008 1948 

P045 0.290 0.141 0.628 2.229 0.00 0.00 0.101 0.047 0.55 0.82 2284 2328 

P141 0.295 0.206 0.606 1.439 0.00 0.00 0.044 0.052 1.00 1.34 1536 1596 

P058 0.295 0.249 0.368 0.855 0.00 0.00 0.181 0.082 1.05 1.81 2236 1708 

P090 0.411 0.314 2.240 7.727 0.00 0.00 0.114 0.064 0.72 1.01 2016 3248 

P143 0.474 0.390 0.812 1.396 0.00 0.00 0.045 0.044 1.18 1.81 1728 1816 

P017 0.585 0.509 0.920 1.872 0.00 0.00 0.109 0.069 1.65 2.00 2356 2224 

P072 0.586 0.574 1.017 1.732 0.00 0.00 0.043 0.061 2.00 2.00 900 936 

P081 0.680 0.660 0.768 0.909 0.00 0.00 0.037 0.038 1.01 1.83 1028 1092 

P096 0.707 0.703 1.526 2.814 0.00 0.00 0.069 0.072 1.67 1.67 1380 1488 

P092 0.712 0.671 1.342 2.641 0.00 0.00 0.070 0.072 1.74 1.74 1380 1480 

P054 0.807 0.736 1.558 2.965 0.00 0.00 0.072 0.071 1.58 1.58 1380 1476 

 

 

Figure 4.12 - Light category – database 2: DET graph of the top 15 algorithms (according to 

EER). 
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Table 4.11 - Light category - database 3: top 15 algorithms, sorted by EER. 
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P133 1.634 1.742 3.009 4.329 0.06 0.79 0.054 0.056 1.71 1.71 3252 3396 

P129 1.645 1.753 2.987 4.210 0.06 0.79 0.047 0.046 1.94 1.94 2216 2392 

P058 2.351 2.738 4.686 6.526 0.00 0.00 0.121 0.082 0.87 1.83 2208 1708 

P045 2.489 3.582 7.814 11.223 0.00 0.00 0.084 0.040 0.47 0.79 2192 2236 

P017 2.887 3.885 6.439 18.128 0.00 0.00 0.091 0.070 1.54 1.94 2208 2164 

P065 2.952 3.669 5.087 7.511 0.00 0.00 0.058 0.057 0.21 0.55 1828 1852 

P141 3.063 4.156 7.110 13.149 0.00 0.00 0.047 0.051 0.95 1.54 1752 1756 

P072 3.205 4.145 6.017 8.182 0.00 0.00 0.041 0.058 2.00 2.00 876 912 

P121 3.338 4.177 5.898 7.424 0.00 0.00 0.058 0.055 1.09 2.00 2124 2056 

P052 3.502 4.848 7.413 15.909 0.00 0.00 0.061 0.067 0.34 0.44 1596 1924 

P143 3.548 5.011 8.366 11.374 0.00 0.00 0.029 0.033 0.95 1.74 1620 1712 

P131 3.632 5.281 10.173 19.535 0.00 0.00 0.077 0.058 1.26 1.74 1884 1592 

P090 4.360 5.357 7.338 17.013 0.00 0.00 0.093 0.058 0.56 0.97 2124 3332 

P096 4.850 7.641 11.266 18.268 0.00 0.00 0.065 0.067 1.67 1.67 1360 1464 

P054 4.871 7.771 11.115 18.225 0.00 0.00 0.068 0.067 1.58 1.58 1360 1460 

 

 

Figure 4.13 - Light category – database 3: DET graph of the top 15 algorithms (according to 

EER). 
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Table 4.12 - Light category - database 4: top 15 algorithms, sorted by EER. 
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P121 0.427 0.249 0.747 1.039 0.00 0.00 0.049 0.049 0.87 1.61 1736 1760 

P129 0.496 0.400 1.115 1.742 0.00 0.00 0.055 0.054 1.94 1.94 2176 2344 

P133 0.522 0.465 1.039 2.327 0.00 0.00 0.063 0.062 1.71 1.71 3212 3344 

P045 0.564 0.400 2.424 10.725 0.00 0.00 0.071 0.053 0.78 1.29 1856 2056 

P141 0.680 0.498 1.613 2.976 0.00 0.00 0.050 0.056 1.36 1.80 1540 1544 

P143 0.875 0.844 1.916 3.323 0.00 0.00 0.027 0.032 0.84 1.53 1272 1348 

P017 1.135 1.190 1.710 3.810 0.00 0.00 0.071 0.066 1.52 1.98 1896 2128 

P090 1.144 1.169 2.229 6.742 0.00 0.00 0.083 0.054 0.51 0.78 1672 2816 

P131 1.603 1.861 4.113 6.396 0.00 0.00 0.073 0.060 1.15 1.63 1596 1436 

P065 1.666 1.775 2.468 4.675 0.00 0.00 0.050 0.049 0.17 0.37 1484 1508 

P052 1.877 2.327 4.794 25.779 0.00 0.00 0.042 0.048 0.28 0.44 1324 1648 

P072 2.024 2.684 4.794 13.961 0.00 0.00 0.036 0.053 2.00 2.00 792 824 

P058 3.443 4.816 7.338 10.065 0.00 0.00 0.116 0.084 0.80 1.77 1732 1624 

P092 5.245 7.890 12.814 26.071 0.00 0.00 0.056 0.060 1.74 1.74 1272 1408 

P096 5.432 8.690 13.745 28.193 0.00 0.00 0.056 0.059 1.67 1.67 1276 1408 

 

 

Figure 4.14 - Light category – database 4: DET graph of the top 15 algorithms (according to 

EER). 
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4.5 FVC-onGoing 

 

FVC-onGoing [103] [104] will offer web-based automatic evaluation of 

fingerprint recognition algorithms on a set of sequestered datasets, reporting results 

using well known performance indicators and metrics. 

The aim is to track the advances in fingerprint recognition technologies, through 

continuously updated independent testing and reporting of performances on given 

benchmarks. The benchmark datasets will not evolve over time; in case new datasets 

will be added in the future, they will form a different benchmark or a new version of an 

existing one: in this way, only results obtained on the same data will be compared.  

The algorithms will be evaluated using strongly supervised approaches (see [10]), to 

maximize trustworthiness of the results. 

While previous FVC initiatives were organized as ―competitions‖, with specific calls 

and fixed time frames, FVC-onGoing will be: 

 an ―on going competition‖ always open to new participants; 

 an evolving online repository of evaluation metrics and results. 

Furthermore, the evaluation will be not only limited to fingerprint verification 

algorithms: ad hoc metrics and datasets for testing specific modules of fingerprint 

verification systems will be available. In fact, since results are always reported as 

FMR/FNMR values (see Subsection 1.1.3) of the entire fingerprint recognition system 

developed, it is practically impossible to understand if an advancement in performance 

is due to a specific matching technique or is in large part due to a minor change in an 

existing feature extraction method. For example, the only way to objectively compare 

fingerprint matchers is to start from the same set of features (i.e., the set of minutiae for 

minutiae based matchers). This will allow to better understand the limits and the 

challenges not only of the whole recognition problem, but also of its building blocks, 

with clear benefits for researchers and algorithms’ developers. 

Benchmarks (witch specific datasets and testing protocols) for the following 

(sub)problems are currently being developed, and others may be added in the future: 

 Fingerprint Verification (assessment of the accuracy of one-to-one fingerprint 

matching algorithms); 

 Orientation Image Extraction (assessment of the accuracy of orientation image 
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extraction algorithms); 

 Minutiae Extraction (assessment of the accuracy of minutiae extraction 

algorithms); 

 Minutiae Matching (assessment of the accuracy of minutiae matching algorithms 

on datasets of minutiae templates). 

One of the main goals of FVC-onGoing is to fully automate the main steps of the 

evaluation: participant registration, algorithm submission, performance evaluation, and 

reporting of the results. To this purpose, a new web-based evaluation framework, whose 

architecture and typical workflow are shown in Figure 4.15, was developed.  

 

4.6 Conclusions 

 

Performance evaluation is important for all pattern recognition applications and 

particularly so for biometrics, which is receiving widespread international attention for 

citizen identity verification and identification in large-scale applications. 

Unambiguously and reliably assessing the current state of the technology is mandatory 

for understanding its limitations and addressing future research requirements. This 

document reviews and classifies current biometric testing initiatives and assesses the 

state-of-the-art in fingerprint verification through presentation of the results of the 

fourth international Fingerprint Verification Competition (FVC2006). The interest 

shown in the FVC testing program by algorithm developers continues to be very high: 

the fingerprint databases of the three previous editions constitute the most frequently 

used benchmarking databases in scientific publications on fingerprint recognition; in 

this fourth edition (FVC2006), a total of 70 algorithms, submitted by 53 participants, 

have been evaluated by the organizers. The huge amount of data collected during the 

tests (not only match scores, but also execution times, template size, etc.), together with 

the high-level information on the algorithms is currently being analyzed to gain more 

insights into the current state-of-the art of this challenging pattern recognition problem. 

However, as far as FVC-onGoing is concerned, the development of the evaluation 

framework is completed (see Figure 4.15); in the next months a beta testing phase will 

be carried out with some invited participants and the official start of FVC-onGoing is 

planned to be held in conjunction with the 3rd International Conference on Biometrics 

(ICB2009) [111]. 
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Figure 4.15 - The diagram shows the architecture of the FVC-onGoing evaluation framework 

and an example of a typical workflow: a given participant, after registering to the Web Site (1), 

submits some algorithms (2) to one or more of the available benchmarks; the algorithms (binary 

executable programs compliant to a given protocol) are stored in a specific repository (3). Each 

algorithm is evaluated by the Test Engine that, after some preliminary checks (4), executes it on 

the dataset of the corresponding benchmark (5) and processes its outputs (e.g. matching scores) 

to generate (6) all the results (e.g. EER, score graphs, …), which are finally published (7) on the 

Web Site. 
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CONCLUSIONS 

 

 

In this work, various problems of fingerprint-based biometric systems have been 

analyzed and original solutions to some fundamental problems have been provided. In 

particular, the following topics have been addressed: i) definition of new specifications 

to certify the quality of fingerprint acquisition devices, ii) study and development of a 

new recognition algorithm, based on minutiae local structures, able to efficiently run 

even on light architectures (e.g. smartcards, embedded systems) and iii) performance 

evaluation of fingerprint recognition systems and their individual components. 

The quality of the acquisition device can have a large impact on the accuracy of the 

whole recognition system. This mean, that a low-quality sensor could, on one hand,  

heavily affect the performance and the reliability, on the other, cause low 

interoperability between different fingerprint-recognition systems. For these reasons the 

work in this thesis started by studying the specifications and the standards, at the state-

of-the-art, used to certify the quality of fingerprint acquisition devices. Then, a well-

defined testing protocol to evaluate the real effect of these specifications on the 

accuracy of a generic fingerprint-recognition system has been defined. Successively, 

extensive experiments have been carried out following a well-defined protocol and, 

thanks to the obtained results, three new specifications, with a better cost/performance 

trade-off,  have been defined.   

It is well-known that, to improve the global reliability of these systems, the recognition 

algorithms, being the ―core‖ of any biometric system, hold a primary role. Recently, the 

growing demand for personal privacy and security against external attacks has increased 

the interest of the scientific community in developing new algorithms that could be used 

even on secure platforms such as smartcards or systems-on-a-chip. For these reasons, 

after studying the state-of-the-art of fingerprint recognition algorithms, a novel 

approach that uses an innovative 3D cylindrical representation of the neighborhood of 
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each minutia has been developed. Thanks to the cylinder invariance, fixed-length, bit-

oriented coding and to the local similarity measure used, the new approach met all the 

design goals. Its performance has been measured on a reference benchmark and 

compared with three among the best techniques at the state-of-the-art, with extremely 

good results. 

Finally, part of the work has been devoted to two international competitions to evaluate 

the performance of fingerprint recognition algorithms: FVC2006 and FVC-onGoing. 

Thanks to these competitions, it is possible on the one hand to track the state-of-the-art 

of this type of algorithms and of their components; on the other, to offer to the scientific 

community new reference benchmarks and well-defined testing protocols. 

The interesting results obtained in this work lay the foundations for new important 

developments. Concerning the new recognition algorithm, future research will be 

mainly targeted towards new approaches for fingerprint indexing and template 

protection. This because the 3D representation of the local structures (fixed-length and 

bit-oriented coding) seems very well-suited to be combined with such techniques. The 

new specifications to certify the quality of fingerprint acquisition devices will be 

promoted in the scientific and industrial community, since they are well-defined and can 

aim at becoming a standard in the field. Moreover, a new software tool able to measure 

the characteristics of a given scanner and evaluate its compliance to the specification 

requirements will be developed. As to the international competition FVC-onGoing, a 

beta testing phase is being carried out with some invited participants and the official 

starting is planned to be held in conjunction with the 3rd International Conference on 

Biometrics. 

 

 

 

 

 

 

 

 

 



 

 

132 

 

INDEX OF FIGURES 

 

Figure 1.1 - Classification of most common biometric traits. Other biometric strategies are being 

developed such as those based on hand and finger veins, ear canal, facial thermogram, odor and 

footprints. _____________________________________________________________________ 6 

Figure 1.2 - Diagram of Bertillon Measurements. ___________________________________________ 8 

Figure 1.3 - The basic block diagrams of a generic biometric system. ___________________________ 10 

Figure 1.4 - FMR and FNMR for a given threshold 𝑡 are displayed over the genuine and impostor score 

distributions. __________________________________________________________________ 12 

Figure 1.5 – An example of DET graph. _________________________________________________ 13 

Figure 1.6 - An example of FMR and FNMR curves, where the points corresponding to EER, 

ZeroFNMR, and ZeroFMR are highlighted. __________________________________________ 14 

Figure 1.7 – Biometric Market Report estimated the revenue of various biometrics in the year 2007. __ 16 

Figure 1.8 – Example of a portion of the fingertip’s surface. __________________________________ 17 

Figure 1.9 - Ridges and valleys in a fingerprint image. ______________________________________ 19 

Figure 1.10 - Singular regions (white boxes) and core points (small circles) in fingerprint images. ____ 19 

Figure 1.11 - Seven most common minutiae types. _________________________________________ 20 

Figure 1.12 - a) a ridge ending minutia: [x0,y0] are the minutia coordinates;  is the angle that the minutia 

tangent forms with the horizontal axis; b) a bifurcation minutia:  is now defined by means of the 

ridge ending minutia corresponding to the original bifurcation that exists in the negative image. _ 20 

Figure 1.13 – A fingerprint where pores are highlighted. _____________________________________ 21 

Figure 1.14 – Graph of the main application fields of fingerprint recognition systems in the civilian 

market._______________________________________________________________________ 22 

Figure 2.1 – An example of inked fingerprint card. _________________________________________ 23 

Figure 2.2 – Different types of fingerprint scanners. ________________________________________ 24 

 

 



 

Indices of Figures 

133 

 

Figure 2.3 – Fingerprint images of the same finger as acquired by different commercial scanners. Images 

are reported with right proportions: a) Biometrika FX2000, b) Digital Persona UareU2000, c) 

Identix DFR200, d) Ethentica TactilSense T-FPM, e) ST-Microelectronics TouchChip TCS1AD, f) 

Veridicom FPS110, g) Atmel FingerChip AT77C101B, h) Authentec AES4000 [9]. __________ 25 

Figure 2.4 - Minimum values 𝑀𝑇𝐹𝑚𝑖𝑛𝑓 at nominal frequencies 𝑓 (expressed in cycles per 𝑚𝑚) for the 

IAFIS (1000ppi and 500ppi) and PIV (500ppi) IQS. Values for PassDEÜV IQS are equal to IAFIS 

(500ppi) IQS. _________________________________________________________________ 28 

Figure 2.5 - An example of how the results are presented in the following section. The horizontal axis 

reports the various requirements 𝑅𝑄𝑗, 𝑗 = 1, … , 𝑀𝑄 and the vertical axis the relative EER difference 

(expressed as a percentage value). The box corresponding to each 𝑅𝑄𝑗 shows descriptive statistics 

of the 𝜌𝑖𝑄𝑗, 𝑖 = 1. . 𝑛 values. The median value is denoted by the line separating the two halves of 

the box; the mean values are marked with black points, which are connected by a line to better 

highlight their trend. ____________________________________________________________ 32 

Figure 2.6 - Box-plot of the Acquisition area experiment; the first five boxes are expanded in the inner 

graph to better show their statistics. The horizontal axis reports the minimum acquisition area 

requirements (in square millimeters) and the vertical axis the relative EER difference (expressed as 

a percentage value). The requirement analogous to the PassDEÜV and PIV IQS are highlighted. 34 

Figure 2.7 - Box-plot of the Output resolution experiment; the first five boxes are expanded in the inner 

graph to better show their statistics. The horizontal axis reports the requirements on the maximum 

percentage variation from the nominal output resolution (𝑅𝑂𝑅𝐼𝐺); the vertical axis reports the 

relative EER difference (expressed as a percentage value). The requirements of the 

IAFIS/PassDEÜV (±1%) and PIV (±2%) IQS are highlighted. _________________________ 35 

Figure 2.8 - Examples of the 𝐵𝑎𝑟𝑟𝑒𝑙𝐷𝑖𝑠𝑡𝑇, 𝑑 transformation applied to a square mesh grid 𝑇. From left to 

right: original image (𝑇), result with 𝑑 = 5%, and result with 𝑑 = 10%. ___________________ 37 

Figure 2.9 - Box-plot of the Geometric accuracy experiment; the first five boxes are expanded in the inner 

graph to better show their statistics. The horizontal axis reports the requirements on the maximum 

allowed relative distortion; the vertical axis reports the relative EER difference (expressed as a 

percentage value). The requirements corresponding to the IAFIS/ PassDEÜV and PIV IQS are 

highlighted. ___________________________________________________________________ 37 

Figure 2.10 - Solid curves: minimum 𝑀𝑇𝐹 values for the various 𝑅𝑆𝐹𝑅𝑗 requirements; dashed curves: 

minimum 𝑀𝑇𝐹 values for the IAFIS (500ppi) and PIV IQS. PassDEÜV IQS curve is the same of 

IAFIS (500ppi) IQS. ____________________________________________________________ 39 

Figure 2.11 - Box-plot of the SFR experiment; the first five boxes are expanded in the inner graph to 

better show their statistics. The horizontal axis reports the requirements, given as values for the f0 

parameter and the vertical axis reports the relative EER difference (expressed as a percentage 

value). The requirements corresponding to the IAFIS/PassDEÜV and PIV IQS are highlighted. _ 40 

 

 



 

Biometric Fingerprint Recognition Systems 

134  

 

 

Figure 2.12 - Box-plot of the 𝑆𝑁𝑅 experiment; the first five boxes are expanded in the inner graph to 

better show their statistics. The horizontal axis reports the requirements on the minimum 𝑆𝑁𝑅 and 

the vertical axis reports the relative EER difference (expressed as a percentage value). The 

requirements corresponding to the IAFIS/PassDEÜV (𝑆𝑁𝑅 ≥ 125) and PIV (𝑆𝑁𝑅 ≥ 70) IQS are 

highlighted. ___________________________________________________________________ 42 

Figure 2.13 - Box-plot of the Fingerprint gray range experiment; the first five boxes are expanded in the 

inner graph to better show their statistics. The horizontal axis reports the requirements on the 

minimum number of different gray levels (𝐷𝑅) and the vertical axis reports the relative EER 

difference (expressed as a percentage value). The requirements corresponding to the 

IAFIS/PassDEÜV (𝐷𝑅 ≥ 200) and PIV (𝐷𝑅 ≥ 150) IQS are highlighted. _________________ 43 

Figure 2.14 - An example of application of each transformation. a) Original image; b) Image cropped to 

simulate the minimum acquisition area for 𝑅𝐴𝑟𝑒𝑎7 (PIV IQS); c) Image resampled to simulate the 

maximum allowed resolution for 𝑅𝑅𝑒𝑠10 (the 250 pixel segment highlighted in the original image 

is here 262 pixel); d) Maximum barrel distortion allowed by 𝑅𝐺𝐴𝑐𝑐10 (the 250 pixel segment 

highlighted in the original image is here 272 pixel); e) Image obtained by applying the Butterworth-

like filter to simulate the minimum MTF values for 𝑅𝑆𝐹𝑅9; f) Noise added to simulate the 

minimum SNR for 𝑅𝑆𝑁𝑅10; g) Number of gray levels reduced to the minimum number required 

by 𝑅𝐺𝑅𝑎𝑛𝑔𝑒8. ________________________________________________________________ 44 

Figure 2.15 - Average (left graph) and median (right graph) performance variation for each quality 

parameter 𝑄 at the requirement 𝑅𝑄𝑗 corresponding to the IAFIS, PassDEÜV and PIV requirements.

_____________________________________________________________________________ 47 

Figure 2.16 – Fingerprint image acquired by simulating scanners compliant with each IQS. _________ 50 

Figure 2.17 - A box-plot for each specification. Each box-plot graphically shows descriptive statistics of a 

set of data: the top and bottom of the vertical line denotes the largest and smallest observation, 

respectively; the rectangle contains 50% of the observations (from the first to the third quartile) and 

highlights the median (second quartile); finally the mean of all the observations is marked with a 

black circle. ___________________________________________________________________ 51 

Figure 2.18 - Example of a sine wave target used to calculate MTF. ____________________________ 54 

Figure 2.19 - A fingerprint image and the result of the convolution 𝐼𝑐. __________________________ 57 

Figure 2.20 - Fingerprint image (a), and the related segmented image where the sub-windows (32 × 32 

pixels wide) used to calculate TSI are shown (b). ______________________________________ 59 

Figure 2.21 - Bar targets of different gray level range and frequencies (first and second row) and plots of 

a horizontal section (last row). ____________________________________________________ 60 

Figure 2.22 - Fingerprint images with different characteristics: high (a) and low (b) frequency, small (c) 

and large (d) gray level range. For each image the TSI value is reported as well. _____________ 61 

Figure 2.23 - In the first row a sequence of progressively defocused images of the same finger is shown. 

Plots of a fingerprint section and the TSI values are given in the second row. ________________ 62 

 



 

Indices of Figures 

135 

 

Figure 2.24 - Plot of a real fingerprint section (a) and plots obtained by: manually defocusing the device 

(b), applying the Pillbox (c) and Butterworth (d) filters. ________________________________ 62 

Figure 2.25 - First row: sinusoidal targets (a), focus degradation using the Pillbox (b) and the Butterworth 

(c) filters. Second row: related plots of a horizontal section. _____________________________ 63 

Figure 2.26 - MTF (a,d), IQM (b,e) and TSI (c,f) values as a function of the blurring grade introduced by 

applying the Pillbox (first row) and Butterworth (second one) filters to sinusoidal targets. _____ 64 

Figure 2.27 - TSI and IQM values obtained from the images in Figure 2.23. The correlation between the 

two series is 0.99. ______________________________________________________________ 65 

Figure 2.28 - Average TSI and IQM scores on fingerprint images as a function of the blurring level 

introduced by the application of the Pillbox (a) and Butterworth (b) filters. _________________ 65 

Figure 3.1 - A graphical representation of the local structure associated to a given minutia: (a) the 

cylinder with the enclosing cuboid; (b) the discretization of the cuboid into cells (c) of size Δ𝑆 ×

Δ𝑆 × Δ𝐷: only cells whose center is within the cylinder are shown. Note that the cylinder is rotated 

so that axis 𝑖 (d) is aligned to the direction of the corresponding minutia (e). ________________ 73 

Figure 3.2 - Section of a cylinder associated to a minutia 𝑚. All the minutiae involved in the construction 

of the cylinder are shown. Note that they do not necessarily lie inside the cylinder base, since an 

offset of 3𝜍𝑆 is allowed. 𝐺𝑆𝑡 values in the neighborhood of a given cell (with center 𝑝𝑖, 𝑗𝑚) are 

highlighted (darker areas represents higher values). The black minutiae are those within 

neighborhood 𝑁𝑝𝑖, 𝑗𝑚. __________________________________________________________ 76 

Figure 3.3 - A simplified case where only one minutia (𝑚1) contributes to the cylinder associated to 

minutia 𝑚. Different 𝐶𝑚𝑖, 𝑗, 𝑘 values are represented by different gray levels (the lighter, the 

greater). The 𝑁𝐷 areas (six in this example) under the Gaussian curve are graphically highlighted 

and the relevant values in equations (3.8) and (3.11) are numerically exemplified for each 𝑘: in 

particular, 𝛼𝑘 = 𝑑𝜙𝑑𝜑𝑘, 𝑑𝜃𝑚, 𝑚1 is the input value of function 𝐺𝐷 in (3.8), while 𝛼𝑘𝐿 and 𝛼𝑘𝑈 

are the lower and upper limits of the integral in (3.11), respectively. In practice, minutia 𝑚1 

contributes to more cylinder sections with different weights, according to its directional difference 

with 𝑚. Note that non-zero cell values are not perfectly symmetric with respect to the cell 

containing 𝑚1: this is because 𝑚1 does not exactly lie in the center of the cell. ______________ 78 

Figure 3.4 - A graphical representation of a cylinder: the minutiae involved (a) and the cell values (b): 

lighter areas represent higher values. _______________________________________________ 81 

Figure 3.5 - A minutiae template with the corresponding convex hull (a). For each of the three minutiae 

highlighted in (a), column (b) shows the base of the corresponding cylinder (only valid cells are 

drawn); minutiae within the dashed circles are those that contribute to the cylinder cell values. 

Column (c) shows the cell values of the three cylinders for each value of 𝑘 ∈ 1, … ,6 (lighter 

elements represent higher values); note that the cylinder sections in (c) are rotated according to the 

direction of the corresponding minutia. _____________________________________________ 83 

Figure 3.6 - The cell values of the cylinder associated to minutia 𝑚3 in Figure 3.5 using the bit-based 

implementation (black=0, white=1, gray=𝑖𝑛𝑣𝑎𝑙𝑖𝑑).____________________________________ 83 

 



 

Biometric Fingerprint Recognition Systems 

136  

 

Figure 3.7 - An example of the global relationships considered in the relaxation procedure. The similarity 

𝜆1𝑖 between minutiae 𝑎1 and 𝑏1 is modified according to: i) the compatibility between the global 

relationships 𝑎1 ↔ 𝑎2 and 𝑏1 ↔ 𝑏2 (𝜌1,2), ii) the compatibility between 𝑎1 ↔ 𝑎3 and 𝑏1 ↔

𝑏3 (𝜌1,3). The three invariant features used to calculate 𝜌𝑡, 𝑘 are graphically highlighted: i) the 

spatial distances (dashed black lines), ii) the directional differences (gray angles with dashed 

border), and iii) the radial angles (gray angles with dotted border). ________________________ 87 

Figure 3.8 - A fingerprint from FVC2006 DB2 and the corresponding ISO templates obtained by the five 

minutiae extractors (a-e). ________________________________________________________ 90 

Figure 3.9 - A fingerprint from each FVC2006 database, at the same scale factor. _________________ 90 

Figure 3.10 - Average EER over the five datasets DS2[a-e], for each of the four global-scoring 

techniques. ____________________________________________________________________ 94 

Figure 3.11 Average FMR1000 over the five datasets DS2[a-e], for each of the four global-scoring 

techniques. ____________________________________________________________________ 94 

Figure 3.12 - DET graph of the six algorithms on DS2d, using LSA-R. _________________________ 95 

Figure 3.13 - Average EER over the five datasets DS1[a-e], for each of the four global-scoring 

techniques. ____________________________________________________________________ 96 

Figure 3.14 - Average FMR1000 over the five datasets DS1[a-e], for each of the four global-scoring 

techniques. ____________________________________________________________________ 97 

Figure 3.15 - Average EER over the five datasets DS3[a-e], for each of the four global-scoring 

techniques. ____________________________________________________________________ 98 

Figure 3.16 - Average FMR1000 over the five datasets DS3[a-e], for each of the four global-scoring 

techniques. ____________________________________________________________________ 98 

Figure 3.17 - Average EER over the five datasets DS4[a-e], for each of the four global-scoring 

techniques. ____________________________________________________________________ 99 

Figure 3.18 - Average FMR1000 over the five datasets DS4[a-e], for each of the four global-scoring 

techniques. ___________________________________________________________________ 100 

Figure 4.1 - Classification of off-line biometric evaluations. _________________________________ 106 

Figure 4.2 - A fingerprint image from each database, at the same scale factor. ___________________ 110 

Figure 4.3 - Testing procedure. ________________________________________________________ 112 

Figure 4.4 - Histograms of the distribution of the different features (on the left) and of the different 

matching strategies (on the right) exploited by the algorithms. __________________________ 117 

Figure 4.5 - Comparison between the features exploited by the algorithms in FVC2006 and FVC2004. 117 

Figure 4.6 - Comparison between the matching approaches of the algorithms in FVC2006 and FVC2004.

____________________________________________________________________________ 118 

Figure 4.7 - Open category – database 1: DET graph of the top 15 algorithms (according to EER). ___ 119 

Figure 4.8 - Open category – database 2: DET graph of the top 15 algorithms (according to EER). ___ 120 

Figure 4.9 - Open category – database 3: DET graph of the top 15 algorithms (according to EER). ___ 121 

Figure 4.10 - Open category – database 4: DET graph of the top 15 algorithms (according to EER). __ 122 

Figure 4.11 - Light category – database 1: DET graph of the top 15 algorithms (according to EER). __ 123 



 

Indices of Figures 

137 

 

Figure 4.12 - Light category – database 2: DET graph of the top 15 algorithms (according to EER). _ 124 

Figure 4.13 - Light category – database 3: DET graph of the top 15 algorithms (according to EER). _ 125 

Figure 4.14 - Light category – database 4: DET graph of the top 15 algorithms (according to EER). _ 126 

Figure 4.15 - The diagram shows the architecture of the FVC-onGoing evaluation framework and an 

example of a typical workflow: a given participant, after registering to the Web Site (1), submits 

some algorithms (2) to one or more of the available benchmarks; the algorithms (binary executable 

programs compliant to a given protocol) are stored in a specific repository (3). Each algorithm is 

evaluated by the Test Engine that, after some preliminary checks (4), executes it on the dataset of 

the corresponding benchmark (5) and processes its outputs (e.g. matching scores) to generate (6) all 

the results (e.g. EER, score graphs, …), which are finally published (7) on the Web Site. _____ 129 

 

 

 

 

 

 

 



 

 

138 

 

INDEX OF TABLES 

 

Table 1.1 - Comparison of various biometric technologies (H=High, M=Medium, L=Low). A low ranking 

indicates poor performance in the evaluation criterion whereas a high ranking indicates a very good 

performance [12]. ______________________________________________________________ 16 

Table 2.1 - A comparison of IAFIS, PIV and PassDEÜV IQS requirements for the main quality 

parameters; the differences in the PIV and PassDEÜV requirements respect to the IAFIS 

requirements are highlighted using bold font. _________________________________________ 29 

Table 2.2 - A comparison of CNIPA-A/B/C requirements for the main quality parameters __________ 49 

Table 2.3 - The table reports, for each quality parameter, the characteristic of the scanners hypothesized 

for enrolment and verification. In fact, in a typical large-scale application, the scanner used during 

enrolment may be different from those used during verification. Note that ―different‖ does not 

necessarily imply a distinct model/vendor: in fact, two scanners of the same model may produce 

different output images. For instance if a certain scanner model is compliant to a 500ppi±1% output 

resolution specification, one of such devices may work at 505ppi and another at 495ppi. _______ 50 

Table 2.4 - For each of the quality parameters a label in {―L: Low‖, ―M: Medium‖, ―H: High‖} is used to 

characterize the level of ―strictness‖ of the requirement in the specifications. ―H‖ is used when the 

constraint is as ―strict‖ as in the FBI IAFIS-IQS [20]; ―M‖ and ―L‖ are used when the specification 

is moderately or significantly relaxed, respectively, with respect to the corresponding FBI IAFIS-

IQS. _________________________________________________________________________ 52 

Table 3.1 - Number of operations required to compute the similarity between two cylinders. ________ 82 

Table 3.2 - Parameter Values. __________________________________________________________ 91 

Table 3.3 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB2 (Percentage 

Values). ______________________________________________________________________ 93 

Table 3.4 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB1 (Percentage 

Values). ______________________________________________________________________ 96 

Table 3.5 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB3 (Percentage 

Values). ______________________________________________________________________ 97 



 

Index of Tables 

139 

 

Table 3.6 - Accuracy of the Algorithms on the Five Datasets Obtained from FVC2006 DB4 (Percentage 

Values). ______________________________________________________________________ 99 

Table 3.7 - Average Matching Times Over All Datasets (milliseconds).________________________ 102 

Table 3.8 - Average Memory Size of the Local Structures, Over All Datasets, Measured in Bytes. ___ 102 

Table 4.1 - The four Fingerprint Verification Competitions: A summary. ______________________ 108 

Table 4.2 - The 53 FVC2006 participants: 17 of them submitted two algorithms (one for each category), 

27 participated only in the Open category and 9 participated only in the Light category. The two 

struck-out rows denote participants that were disqualified due to unfair behaviour of their 

algorithms. __________________________________________________________________ 109 

Table 4.3 - Scanners/technologies used for collecting the databases. __________________________ 110 

Table 4.4 - High-level description of the algorithms from 52 participants. Notes: P030 - Raw image parts 

and Correlation are used only in the Open category. P058 - Ridge counts is used only in the Open 

category. P101 - Ridge pattern (texture) and Correlation are used only in the Open category. P131 - 

alignment type is Non-linear in the Open category and Displacement + Rotation + Scale in the 

Light one; Ridge  Count is used only in the Light category, all the other bracketed elements only in 

the Open category.  P141 - alignment type is Non-linear in the Open category. P144 - Local ridge 

frequency and Texture measures are used only in the Open category. _____________________ 115 

Table 4.5 - Open category - database 1: top 15 algorithms, sorted by EER. _____________________ 118 

Table 4.6 - Open category - database 2: top 15 algorithms, sorted by EER. _____________________ 119 

Table 4.7 - Open category - database 3: top 15 algorithms, sorted by EER. _____________________ 120 

Table 4.8 - Open category - database 4: top 15 algorithms, sorted by EER. _____________________ 121 

Table 4.9 - Light category - database 1: top 15 algorithms, sorted by EER. _____________________ 123 

Table 4.10 - Light category - database 2: top 15 algorithms, sorted by EER. ____________________ 124 

Table 4.11 - Light category - database 3: top 15 algorithms, sorted by EER. ____________________ 125 

Table 4.12 - Light category - database 4: top 15 algorithms, sorted by EER. ____________________ 126 

 



 

 

140 

 

BIBLIOGRAPHY 

 

[1] A. Alessandroni, R. Cappelli, M. Ferrara, and D. Maltoni, "Definition of Fingerprint Scanner Image 

Quality Specifications by Operational Quality," in Proceedings European Workshop on Biometrics 

and Identity Management (BIOID 2008), Roskilde, Denmark, 2008, pp. 29-35. 

[2] R. Cappelli, M. Ferrara, and D. Maltoni, "On the Operational Quality of Fingerprint Scanners," 

Information Forensics and Security, IEEE Transactions on, vol. 3, pp. 192--202, 2008. 

[3] R. Cappelli, M. Ferrara, and D. Maltoni, "The Quality of Fingerprint Scanners and Its Impact on the 

Accuracy of Fingerprint Recognition Algorithms," Lecture Notes in Computer Science, vol. 4105, 

pp. 10-16, 2006. 

[4] R. Cappelli, M. Ferrara, A. Franco, and D. Maltoni, "Fingerprint verification competition 2006," 

Biometric Technology Today, vol. 15, no. 7-8, pp. 7-9, August 2007. 

[5] R. Cappelli et al., "Report describing FVC 2006 technology evaluation," BioSecure Deliverable 

D2.1.3, 2007. 

[6] M. Ferrara, A. Franco, and D. Maltoni, "Estimating Image Focusing in Fingerprint Scanners," in 

proceedings Workshop on Automatic Identification Advances Technologies (AutoID07), Alghero, 

Italy, 2007, pp. 30-34. 

[7] M. Ferrara, A. Franco, and D. Maltoni, "Fingerprint scanner focusing estimation by Top 

Sharpening Index," in proceedings 14th International Conference on Image Analysis and 

Processing (ICIAP07), Modena, Italy, 2007, pp. 223-228. 

[8] B. Dorizzi et al., "Fingerprint and On-line signature Verification Competitions at ICB 2009," in 

Proceedings 3rd IAPR/IEEE International Conference on Biometrics (ICB09), Alghero, 2009. 

[9] A. K. Jain, P. Flynn, and A. A. Ross, Handbook of Biometrics.: Springer, 2008. 

[10] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Fingerprint Recognition, 2nd ed.: 

Springer-Verlag New York, NJ, USA, 2009. 

[11] R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman, and A. K. Jain, "Performance Evaluation of 

Fingerprint Verification Systems," IEEE Transactions on Pattern Analysis and Machine 

Intelligence, pp. 3-18, 2006. 

[12] A. K. Jain, R. Bolle, and S. Pankanti, Biometrics: Personal Identification in Networked Society.: 

Kluwer Academic Publishers, 1999. 



 

Bibliography 

141 

 

[13] A. K. Jain, A. Ross, and S. Prabhakar, "An introduction to biometric recognition," Circuits and 

Systems for Video Technology, IEEE Transactions on, vol. 14, pp. 4--20, 2004. 

[14] A. K. Jain, S. Prabhakar, and S. Pankanti, "On the similarity of identical twin fingerprints," Pattern 

Recognition, vol. 35, pp. 2653--2663, 2002. 

[15] J. Wayman, A. K. Jain, D. Maltoni, and D. Maio, Biometric systems.: Springer, 2005. 

[16] (2009, March) US-VISIT Program Web Site. [Online]. http://www.dhs.gov/us-visit 

[17] NIST. (2009, March) PIV Program web site. [Online]. http://csrc.nist.gov/piv-program 

[18] Council of EU, Council Regulation (EC) No 2252/2004 of 13 December 2004 on standards for 

security features and biometrics in passports and travel documents issued by Member States, 

December 29, 2004, Official Journal of the EU. 

[19] (2008, February) GMPC Project Web Site. [Online]. http://www.jpn.gov.my/kppk1/Index2.htm 

[20] (2008, February) Singapore Biometric Passport Web Site. [Online]. http://app.ica.gov.sg 

[21] Department of Justice, F.B.I., "Electronic Fingerprint Transmission Specification," CJIS-RS-0010 

(V7), January 1999. 

[22] F.B.I., CJIS Division, Image Quality Specifications for Single Finger Capture Devices, July 2006, 

version 071006; download at: http://www.fbi.gov/hq/cjisd/iafis/piv/pivspec.pdf, March 2009. 

[23] BSI, Quality requirements for the acquisition and transmission of fingerprint image data as 

biometric feature for electronic identification documents, March 2009, available online at: 

http://www.bsi.de/english/publications/techguidelines/tr03104. 

[24] R. D. Forkert, G. T. Kearnan, N. B. Nill, and P. N. Topiwala, Test Procedures for Verifying IAFIS 

Scanner Image Quality Requirements, November 1994, MITRE document number MP 

94B0000039R1. 

[25] N. B. Nil, Test Procedures for Verifying IAFIS Image Quality Requirements for Fingerprint 

Scanners and Printers, April 2005, MITRE Technical Report MTR 05B0000016. 

[26] N. B. Nill, Test Procedures for Verifying Image Quality Requirements for Personal Identity 

Verification (PIV) Single Finger Capture Devices, December 2006, MITRE Technical Report MTR 

060170. 

[27] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain, "FVC2000: Fingerprint 

Verification Competition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

24, pp. 402-412, 2002. 

[28] BioLab. (2009, March) FVC2006 Web Site. [Online]. http://bias.csr.unibo.it/fvc2006 

[29] O. Sanchez, "BioSec: a European project," Biometric Technology Today, vol. 13, no. 6, June 2005. 

[30] J. Fierrez, J. Ortega-Garcia, D. T. Toledano, and J. Gonzalez-Rodriguez, "Biosec baseline corpus: 

A multimodal biometric database," Pattern Recognition, vol. 40, no. 4, pp. 1389-1392, April 2007. 

[31] C. C. Slama, C. Theurer, and S. W. Henriksen, Manual of photogrammetry, 4th ed. Falls Church, 

VA: American Society of Photogrammetry, 1980. 

[32] G. Vass and T. Perlaki, "Applying and removing lens distortion in post production," in The Second 

Hungarian Conference on Computer Graphics and Geometry, Budapest, 2003. 

[33] S. Butterworth, ", On the theory of filter amplifiers," Wireless Engineer, vol. 7, pp. 536-541, 

October 1930. 

 

http://www.dhs.gov/us-visit
http://csrc.nist.gov/piv-program
http://www.jpn.gov.my/kppk1/Index2.htm
http://app.ica.gov.sg/
http://bias.csr.unibo.it/fvc2006


 

Biometric Fingerprint Recognition Systems 

142  

 

[34] P. Heckbert, "Color image quantization for frame buffer display," ACM SIGGRAPH Computer 

Graphics, vol. 16, pp. 297-307, 1982. 

[35] (2009, March) SWGFAST, Scientific Working Group on Friction Ridge Analysis, Study and 

Technology. [Online]. http://www.swgfast.org 

[36] (2009, March) CNIPA Web Site. [Online]. http://www.cnipa.gov.it/site/it-IT/ 

[37] N. B. Nill and B. H. Bouzas, "Objective Image Quality Measure Derived from Digital Image Power 

Spectra," Optical Engineering, vol. 31, no. 4, pp. 813-825, 1992. 

[38] X. Zhang et al., "A signal processing system on chip for digital cameras," IEEE Annual Conference 

on Industrial Electronics Society, vol. 2, pp. 1243-1248, 2000. 

[39] S. W. Smith, The scientist and engineer's guide to digital signal processing, 2nd ed. San Diego, 

California, CA, USA: California Technical Publishing, 2003. 

[40] N. K. Ratha, K. Karu, S. Chen, and A. K. Jain, "A Real-Time Matching System for Large 

Fingerprint Databases," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, 

pp. 799-813, 1996. 

[41] S. H. Chang, F. H. Cheng, W. H. Hsu, and G. Z. Wu, "Fast algorithm for point pattern matching: 

Invariant to translations, rotations and scale changes," Pattern Recognition, vol. 30, pp. 311-320, 

1997. 

[42] A. K. Hrechak and J. A. McHugh, "Automated fingerprint recognition using structural matching," 

Pattern Recognition, vol. 23, pp. 893-904, 1990. 

[43] A. J. Willis and L. Myers, "A cost-effective fingerprint recognition system for use with low-quality 

prints and damaged fingertips," Pattern Recognition, vol. 34, pp. 255-270, 2001. 

[44] X. Jiang and W. Y. Yau, "Fingerprint Minutiae Matching Based on the Local and Global 

Structures," Pattern Recognition, International Conference on, vol. 2, p. 6038, 2000. 

[45] N. K. Ratha, V. D. Pandit, R. M. Bolle, and V. Vaish, "Robust Fingerprint Authentication Using 

Local Structural Similarity," Applications of Computer Vision, IEEE Workshop on, p. 29, 2000. 

[46] T. Y. Jea and V. Govindaraju, "A minutia-based partial fingerprint recognition system," Pattern 

Recognition, vol. 38, pp. 1672-1684, 2005. 

[47] S. Chikkerur, A. N. Cartwright, and V. Govindaraju, "K-plet and Coupled BFS: A Graph Based 

Fingerprint Representation and Matching Algorithm," Lecture Notes in Computer Science, vol. 

3832, p. 309, 2006. 

[48] D. Kwon, I. D. Yun, D. H. Kim, and S. U. Lee, "Fingerprint Matching Method Using Minutiae 

Clustering and Warping," , vol. 4. 

[49] H. Chen, J. Tian, and X. Yang, "Fingerprint Matching with Registration Pattern Inspection," 

Lecture Notes in Computer Science, pp. 327-334, 2003. 

[50] J. Feng, "Combining minutiae descriptors for fingerprint matching," Pattern Recognition, vol. 41, 

pp. 342 - 352, 2008. 

[51] X. Tan and B. Bhanu, "A robust two step approach for fingerprint identification," Pattern 

Recognition Letters, vol. 24, pp. 2127-2134, 2003. 

[52] G. Parziale and A. Niel, "A Fingerprint Matching Using Minutiae Triangulation," Lecture Notes in 

Computer Science, pp. 241-248, 2004. 

[53] X. Chen, J. Tian, J. Yang, and Y. Zhang, "An algorithm for distorted fingerprint matching based on 

local triangle feature set," IEEE Transactions on Information Forensics and Security, vol. 1, pp. 

169-177, 2006. 

http://www.swgfast.org/
http://www.cnipa.gov.it/site/it-IT/


 

Bibliography 

143 

 

[54] D. Q. Zhao, F. Su, and A. Cai, "Fingerprint Registration Using Minutia Clusters and Centroid 

Structure," , 2006, pp. 413-416. 

[55] W. Xu, X. Chen, and J. Feng, "A Robust Fingerprint Matching Approach: Growing and Fusing of 

Local Structures," Lecture Notes in Computer Science, vol. 4642, p. 134, 2007. 

[56] X. Linag, A. Bishnu, and T. Asano, "A Robust Fingerprint Indexing Scheme Using Minutia 

Neighborhood Structure and Low-Order Delaunay Triangles," Information Forensics and Security, 

IEEE Transactions on, vol. 2, pp. 721-733, 2007. 

[57] M. Tico and P. Kuosmanen, "Fingerprint Matching Using an Orientation-Based Minutia 

Descriptor," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1009-1014, 

2003. 

[58] J. Qi and Y. Wang, "A robust fingerprint matching method," Pattern Recognition, vol. 38, pp. 

1665-1671, 2005. 

[59] E. Zhu, J. Yin, and G. Zhang, "Fingerprint matching based on global alignment of multiple 

reference minutiae," Pattern Recognition, vol. 38, pp. 1685-1694, 2005. 

[60] X. Wang, J. Li, and Y. Niu, "Fingerprint matching using OrientationCodes and PolyLines," Pattern 

Recognition, vol. 40, pp. 3164-3177, 2007. 

[61] Y. He, J. Tian, L. Li, H. Chen, and X. Yang, "Fingerprint Matching Based on Global 

Comprehensive Similarity," IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 

850-862, 2006. 

[62] X. He, J. Tian, L. Li, Y. He, and X. Yang, "Modeling and Analysis of Local Comprehensive 

Minutia Relation for Fingerprint Matching," Systems, Man and Cybernetics, Part B, IEEE 

Transactions on, vol. 37, pp. 1204-1211, 2007. 

[63] H. Wei, M. Guo, and Z. Ou, "Fingerprint Verification Based on Multistage Minutiae Matching," , 

2006, pp. 1058-1061. 

[64] G. S. Ng, X. Tong, X. Tang, and D. Shi, "Adjacent Orientation Vector Based Fingerprint Minutiae 

Matching System," , 2004, pp. 528-531. 

[65] X. Tong, J. Huang, X. Tang, and D. Shi, "Fingerprint minutiae matching using the adjacent feature 

vector," Pattern Recognition Letters, vol. 26, pp. 1337-1345, 2005. 

[66] L. Sha, F. Zhao, and X. Tang, "Minutiae-based Fingerprint Matching Using Subset Combination," , 

2006, pp. 566-569. 

[67] J. Feng, Z. Ouyang, and A. Cai, "Fingerprint matching using ridges," Pattern Recognition, vol. 39, 

pp. 2131-2140, 2006. 

[68] Y. Zhang, X. Yang, Q. Su, and J. Tian, "Fingerprint Recognition Based on Combined Features," 

Lecture Notes in Computer Science, vol. 4642, p. 281, 2007. 

[69] D. Lee, K. Choi, and J. Kim, "A Robust Fingerprint Matching Algorithm Using Local Alignment," 

, vol. 16, 2002, pp. 803-806. 

[70] L. Sha and X. Tang, "Orientation-improved minutiae for fingerprint matching," , vol. 4, 2004, pp. 

432-435. 

[71] Y. Feng, J. Feng, X. Chen, and Z. Song, "A Novel Fingerprint Matching Scheme Based on Local 

Structure Compatibility," , 2006, pp. 374-377. 

[72] "Data Format for the Interchange of Extended Fingerprint and Palmprint Features - Addendum to 

ANSI/NIST-ITL 1-2007," ANSI/NIST, Working Draft 0.2, 2008. 

 



 

Biometric Fingerprint Recognition Systems 

144  

 

[73] ISO/IEC 19794-2:2005, Information technology -- Biometric data interchange formats -- Part 2: 

Finger minutiae data, 2005. 

[74] "INCITS 378-2004 - Finger Minutiae Format for Data Interchange," ANSI/INCITS standard, 2004. 

[75] P. Grother, W. Salamon, C. Watson, M. Indovina, and P. Flanagan, "MINEX II: Performance of 

Fingerprint Match-on-Card Algorithms," techreport 2007. 

[76] A. K. Jain, K. Nandakumar, and A. Nagar, "Biometric Template Security," EURASIP Journal on 

Advances in Signal Processing, vol. 8, 2008. 

[77] A. Jules and M. Sudan, "A Fuzzy Vault Scheme," in Int. Symp. on Information Theory, 2002. 

[78] U. Uludag and A. K. Jain, "Fuzzy fingerprint vault," in Workshop on Biometrics: Challenges 

Arising from Theory to Practice, 2004, pp. 13-16. 

[79] U. Uludag and A. K. Jain, "Securing fingerprint template: Fuzzy vault with helper data," in 

Computer Vision and Pattern Recognition Workshop, 2006, pp. 163-171. 

[80] J. Jeffers and A. Arakala, "Minutiae-Based Structures for A Fuzzy Vault," in Biometric Consortium 

Conference, 2006, pp. 1-6. 

[81] J. Jeffers and A. Arakala, "Fingerprint Alignment for A Minutiae-Based Fuzzy Vault," in 

Biometrics Symposium, 2007, pp. 1-6. 

[82] F. P. Preparata and M. I. Shamos, Computational Geometry: An Introduction.: Springer, 1985. 

[83] H. W. Kuhn, "The Hungarian Method for the assignment problem," Naval Research Logistics 

Quarterly, vol. 2, pp. 83-97, 1955. 

[84] A. Rosenfeld, R. A. Hummel, and S. W. Zucker, "Scene Labeling by Relaxation Operations," 

Systems, Man and Cybernetics, IEEE Transactions on, vol. 6, pp. 420-433, 1976. 

[85] BioLab. (2009, March) FVC2006 web site. [Online]. http://bias.csr.unibo.it/fvc2006 

[86] Wikipedia. (2009, March) Rar file format. [Online]. http://en.wikipedia.org/wiki/Rar 

[87] Wikipedia. (2009, March) Zip file format. [Online]. http://en.wikipedia.org/wiki/ZIP_(file_format) 

[88] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain, "FVC2000: Fingerprint 

Verification Competition," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 

24, pp. 402-412, 2002. 

[89] C. Wilson et al., "Fingerprint Vendor Technology Evaluation 2003: Summary of Results and 

Analysis Report," National Institute of Standards and Technology, web site: http://fpvte.nist.gov., 

NISTIR 7123, 2004. 

[90] C. Watson et al., "Studies of One-to-One Fingerprint Matching with Vendor SDK Matchers," 

National Institute of Standards and Technology, NISTIR 7221, 2005. 

[91] P. Grother et al., "MINEX, Performance and Interoperability of the INCITS 378 Fingerprint 

Template," National Institute of Standards and Technology, NISTIR 7296, 2006. 

[92] A. Martin, M. Przybocki, and J. Campbell, "The NIST Speaker Recognition Evaluation Program," 

in Biometric Systems Technology, Design and Performance Evaluation. London: Springer-Verlag, 

2004. 

[93] NIST. (2009, January) Speaker Recognition Evaluation web site. [Online]. 

http://www.nist.gov/speech/tests/spk/index.htm 

[94] P. J. Philips et al., "Facial Recognition Vendor Test 2002 Evaluation Report," FRVT2002 web site: 

http://www.frvt.org/FRVT2002., 2003. 

http://bias.csr.unibo.it/fvc2006
http://en.wikipedia.org/wiki/Rar
http://en.wikipedia.org/wiki/ZIP_(file_format)
http://www.nist.gov/speech/tests/spk/index.htm


 

Bibliography 

145 

 

[95] P. J. Philips, A. Martin, C. L. Wilson, and M, Przybocki, "An Introduction to Evaluating Biometric 

Systems," IEEE Computer Magazine, February 2000. 

[96] UK Government’s Biometrics Working Group, "Best Practices in Testing and Reporting 

Performance of Biometric Devices," v2.01, 2002. 

[97] J. Matas et al., "Comparison of Face Verification Results on the XM2VTS Database," in 

Proceedings of 15th International Conference on Pattern Recognition, vol. 4, Barcelona, 2000, pp. 

858-863. 

[98] K. Messer et al., "Face Authentication Competition on the BANCA Database," in Proceedings 

International Conference on Biometric Authentication (ICBA04), Hong Kong, 2004, pp. 8-15. 

[99] P. J. Philips, H. Moon, S. A. Rizvi, and P. J. Rauss, "The FERET evaluation methodology for face-

recognition algorithms," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, 

no. 10, pp. 1090-1104, October 2000. 

[100] D. M. Blackburn, J. M. Bone, and P.J. Philips, "Facial Recognition Vendor Test 2000 Evaluation 

Report," FRVT2000 web site: http://www.frvt.org/FRVT2000, 2001. 

[101] A. K. Jain and A. Ross, "Fingerprint Mosaicking," in Proceedings International Conference on 

Acoustic Speech and Signal Processing, vol. 4, 2002, pp. 4064-4067. 

[102] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain, "FVC2002: Second Fingerprint 

Verification Competition," in Proceedings 16th International Conference on Pattern Recognition 

(ICPR2002), vol. 3, Québec City, 2002, pp. 811-814. 

[103] Y. Dit-Yan et al., "SVC2004: First International Signature Verification Competition‖, in 

proceedings International Conference on Biometric Authentication (ICBA04)," , Hong Kong, 2004, 

pp. 16-22. 

[104] BioLab. (2009, BioLab) FVC-onGoing web site. [Online]. http://bias.csr.unibo.it/fvcongoing 

[105] BioLab. (2009, March) FVC2000 web site. [Online]. http://bias.csr.unibo.it/fvc2000 

[106] BioLab. (2009, March) FVC2002 web site. [Online]. http://bias.csr.unibo.it/fvc2002 

[107] BioLab. (2009, March) FVC2004 web site. [Online]. http://bias.csr.unibo.it/fvc2004 

[108] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K. Jain, "FVC2004: Third Fingerprint 

Verification Competition", in proceedings International Conference on Biometric Authentication 

(ICBA04)," , Hong Kong, 2004, pp. 1-7. 

[109] R. Cappelli, A. Erol, D. Maio, and D. Maltoni, "Synthetic Fingerprint-image Generation," in 

Proceedings 15th International Conference on Pattern Recognition (ICPR2000), Barcelona, 2000, 

pp. 475-478. 

[110] R. Cappelli, D. Maio, and D. Maltoni, "Synthetic Fingerprint-Database Generation," in Proceedings 

16th International Conference on Pattern Recognition (ICPR2002), vol. 3, Québec City, 2002, pp. 

744-747. 

[111] Vision Lab. (2009, March) ICB09 web site. [Online]. http://icb09.uniss.it/ 

 

 

 

 

 

http://bias.csr.unibo.it/fvcongoing
http://bias.csr.unibo.it/fvc2000
http://bias.csr.unibo.it/fvc2002
http://bias.csr.unibo.it/fvc2004
http://icb09.uniss.it/


 

Biometric Fingerprint Recognition Systems 

146  

 

 


	Frontespizio.pdf
	Tesi.pdf

